Developing a monitoring strategy and protocol for National Trust freshwaters

Jeremy Biggs

© Freshwater Habitats Trust Oxford 2018 For further information please contact: Freshwater Habitats Trust Bury Knowle House North Place Headington Oxford, OX3 9HY

This report should be cited as:

Biggs, J. 2018. Developing a monitoring strategy and protocol for National Trust freshwaters. Freshwater Habitats Trust, Oxford.

Acknowledgements

We would like to thank Stewart Clarke of National Trust for initiating and guiding the work described in this report.

Summary

The National Trust has identified a need to monitor the condition of freshwater habitats on its estate in order to:

- a) Determine the status of freshwater habitats as important wildlife features in their own right;
- b) Assess freshwater quality as an indicator of how well the National Trust is manging the land and soils on its properties.

Overall the objective is to evaluate two kinds of changes: (i) improvement (or deterioration) within the National Trust estate, which will be assessed by comparing the monitored sites at time point 1 (t_1) with their condition at a second time point 2 (t_2), probably on a 5 year monitoring cycle; (ii) the status of National Trust properties compared to the rest of the landscape, which will be assessed by comparing the data collected on National Trust land with the condition of sites in national monitoring programmes using the same methods.

In developing this programme of monitoring the Trust has adopted a tiered approach to freshwater monitoring. Tier 1 will use data from existing national monitoring programmes undertaken by statutory agencies where available collected mainly for Water Framework Directive (WFD) and other statutory monitoring purposes. Tier 2 will complement this information with new data - the main subject of this report - based on a 1 km square stratified sampling approach covering smaller non-WFD waters (ponds, small lakes, streams) which make a substantial contribution to freshwater biodiversity and freshwater ecosystem services. Tier 3 will comprise monitoring that enables individual properties to assess the condition of their waterbodies and Tier 4 comprises detailed bespoke monitoring of specific projects (e.g. natural flood management projects).

The focus of the present report is: (i) the development of the Tier 2 methodology with recommendations for a national monitoring programme, (ii) the identification of opportunities for volunteer-based monitoring in Tier 3. The report describes the type and approximate abundance of different kinds of freshwater habitats on the National Trust estate, the monitoring methods that could be applied to assess the condition of these waterbodies and the advantages and disadvantages of professional and volunteer-based methods. Recommendations are also made on counting pond numbers, which are an important metric of landscape quality (it is not expected that stream length will change).

Power analysis is used to assess the numbers of sample locations needed to detect a given level of change, and the implications that this analysis has for cost and organisation of surveys. Alternative water pollution and biological quality metrics which could be used for assessing the status of freshwaters are reviewed and their costs and benefits evaluated. The analysis takes account of the fact that budgets are unlikely to be as large as those available to statutory bodies but must still generate statistically credible data. The relative skill levels required for different monitoring methods, and their suitability for professional and volunteer surveyors, are also evaluated. We have also assessed the role of new environmental DNA (eDNA) techniques for the National Trust. eDNA methods have been applied successfully to the monitoring of the great crested newt, and are now being introduced for other groups (e.g. fish).

Considering costs and benefits, it is recommended that Tier 2 biological monitoring focuses on wetland and aquatic plants with surveys undertaken professionally. Water quality monitoring should initially be based on the rapid assessment of nitrate and phosphate pollution using Kyoritsu PackTest kits. Diatoms, macroinvertebrates and fish surveyed using traditional methods normally require professional biologists to be applied effectively and are comparatively expensive. There should be further exploration of the use of environmental DNA methods, especially for fish, amphibians and single endangered invertebrate species as part of further partnership work.

It is recommended that for Tier 3 volunteers should be encouraged to monitoring single endangered species. Experience from the HLF funded 'People, Ponds and Water' project

shows that volunteers can monitor the status of such species. Volunteers should also be encouraged to monitor water quality with rapid test kit methods.

The National Trust should also encourage and support volunteer species recording of all relevant freshwater groups feeding into national species mapping projects. A short guide with links to all appropriate recording schemes could be prepared to provide a simple signposting service for those interested in biological recording. For monitoring freshwater invertebrates, there should be further evaluation of rapid invertebrate survey methods such as the RiverFly partnership method.

Costs of the survey options are presented and the main delivery options described. Specific recommendations for the design and implementation of the monitoring programme are listed below. The proposed work on National Trust properties also provides substantial opportunities for encouraging partner organisations to participate in a national-level monitoring programme on small waterbodies.

Recommendations

Recommendation 1: We recommend that National Trust encourages recording of all of freshwater biota which currently have active monitoring groups (e.g. dragonflies, cladocerans, water plants) to add to inventories of these species. At individual sites information on changes in species occurrence, distribution and abundance are likely to be useful for site management even though they are unlikely to provide monitoring data that can be used to report on the overall condition of the Trust's freshwaters.

Recommendation 2. We recommend that freshwater species of conservation concern should be mapped across the National Trust estate as part of a process to identify Important Freshwater Areas on the Trust's land.

Recommendation 3. We recommend that to provide an initial assessment of the extent of water pollution on National Trust properties, Kyoritsu rapid nutrient PackTest kits are used to measure nitrate and phosphate levels. These test kits have been widely used by both volunteer and professional biologists in Freshwater Habitats Trust's Clean Water for Wildlife project, including on National Trust properties.

Recommendation 4: We recommend that the standard PondNet survey of environmental variable for ponds is used, incorporating information requirements identified recently by Natural England for standing waters. We also recommend that a recording form for running waters that incorporates requirements of Natural England for assessing the condition of priority streams is developed for the present project.

Recommendation 5. For widespread monitoring on National Trust properties, metrics based on wetland plants are the only traditional biological survey method which can be easily applied at large numbers of sites at relatively low cost.

Recommendation 6: Ponds should be counted by censusing waterbodies on each National Trust property rather than by taking a sampling approach, such as that used in PondNet or the Countryside Survey.

Recommendation 7: We recommend that PackTest kits are used to evaluate changes in water quality on the National Trust estate, noting the limitations given in Section 5.2.2 about the type of monitoring questions which can be answered with the test kits.

Recommendation 8: Wetland plants provide an effective group for assessing change in small running and standing waters and should be adopted as a monitoring metric provided they can be recorded professionally.

Recommendation 9: If additional funds are available, or there are other opportunities for establishing diatom monitoring programme, monitoring with this metric is potentially is good option.

Recommendation 10: We recommend that the Riverfly score would be worth further investigation provided that there was further analysis of its inherent variability. Additionally, it would be worth assessing first whether there were likely to be substantial impacts on running waters on the National Trust estate which could be amenable to improvement before implementing a programme of volunteer surveys which might lack the power to detect anything other than very substantial changes in the invertebrate fauna.

Recommendation 11: We do not recommend undertaking fish surveys routinely on Tier 2 waterbodies on the National Trust estate unless eDNA techniques become available. Fish survey work may be needed in Tier 4 projects.

Recommendation 12: We recommend that for the taxa for which standard recording schemes are available surveyors should be strongly encouraged to work with national recording schemes and Local Environmental Records Centres to collect records for these groups.

Contents

Sum	mary	ii
1.	Introduction	9
1.1	Background	9
1.2	National Statutory Data (Tier 1)	
1.3	Stratified Sampling Process (Tier 2)	
1.4	Property Engagement (Tier 3)	.12
1.5	Bespoke Project Monitoring (Tier 4)	.13
2.	Aims	.14
3.	A review of the scale of National Trust freshwaters requiring monitoring	.16
3.1	What are freshwaters?	.16
3.2	Waterbodies on the National Trust estate	.17
3.2.1	River, streams and ditches	.17
3.2.2	Ponds and lakes	. 17
4.	Options for carrying out monitoring of National Trust freshwater habitats	22
4.1	Introduction to monitoring methods	
4.2	'Professional' monitoring methods	23
4.3	Volunteer-based freshwater survey schemes	23
4.3.1	BTO wetland and water bird surveys	.23
4.3.2	Surveys of other groups	23
4.4	Recording of species of conservation concern	.26
4.5	Monitoring water quality	
4.6	Advantages and disadvantages of professional and non-technical methods	31
4.6.1	Professional versus volunteer surveyors	31
4.6.2	Simple water quality test kits compared to laboratory analysis	.32
4.6.3	Different biotic groups and indices (e.g. algae, invertebrates, vascular plants)	.34
4.6.4	Community metrics, indicator species and individual species surveys	.34
4.6.5	Novel and emerging techniques (e.g. eDNA)	37
4.7	Collecting environmental data	. 38
4.8	National Trust Land Condition Assessment	
4.9	Application of standard biological metrics on National Trust land	41
5.	Power analysis of the sampling requirements for different monitoring	
appr	oaches	42
5.1	Design of the survey	
5.1.1	What type of change are we analysing?	
5.2	Questions addressed by the survey	
5.2.1	Pond numbers, and numbers of other waterbodies	45
5.2.2	Waterbody pollution	45
5.2.3	Biological quality of water bodies in the National Trust estate	48
5.3	Selecting methods: power analysis and cost	52
5.3.1	Pond numbers	52
5.3.2	Water quality	52
5.3.3	Wetland plants	53
5.3.4	Diatoms	53
5.3.5	Rapid invertebrate assessment using Riverfly taxonomic level	54

5.3.6	Macroinvertebrates at family level and species level	
5.3.7	Fish species richness and abundance	. 55
5.3.8	Amphibian species richness	. 56
5.3.9	Individual species of conservation concern	. 56
5.4	Other recording options	. 57
6.	Options for collating, analysing and archiving data	65
6.1	Existing recording schemes	
6.2	Data collation	
6.2.1	Habitat related data and species of conservation concern monitoring	
6.2.2		
6.3	Data analysis	
6.4	Archiving data	
7.	Suggestions for monitoring particular sites or particular interventions	
7.1	Management interventions	
7.2	Sites	
7.3	Species	
7.3.1	Great crested newt and common toad	
7.3.2		
7.3.3	Brown Galingale	. 69
8.	Develop a matrix of options with details of costs, frequency and delivery optio	ons
(prof	essional versus volunteer)	
8.1	Frequency of survey	. 73
8.1.1	Water quality	. 73
8.1.2	Wetlands plants	. 73
8.2	Cost summary	.74
8.3	Delivery options	. 76
8.3.1	Professional surveyors	. 76
8.3.2	Volunteers with professional co-ordination	. 78
8.3.3	Tier 3 monitoring	. 78
8.3.4	Tier 4 monitoring	. 78
9.	References	70
9.		. / 9
Table	9S	
	1. Length / number of waterbodies on the National Trust estate in England and Wale	
	ored and unmonitored by Environment Agency	
	2. Lakes on the National Trust estate in England and Wales, derived from GB Lakes	
	ase	
	 Lakes monitored by the Environment Agency or Natural Resources Wales on the nal Trust estate in England and Wales for WFD 	
	4. Species and species groups which have existing (a) professional and (b) voluntee	
	cording schemes	
Table	5. Commonly used community metrics for freshwater assemblages in the UK	. 35
	6. Natural England priority habitat data requirements for standing waters	. 39
	7. National monitoring programme data with which monitoring on National Trust	
	es will be compared	. 44
	8. Pond densities in England and Wales in 2007, the most recent national estimate	. –
	as part of the Countryside Survey (Williams <i>et al.</i> 2010)	
	9. Questions to be answered by the proposed National Trust monitoring programme	- 10

Table 10. Summary of power analyses. Unless otherwise stated values are 70% power to detect a 30% at p value of = 0.05	
Table 11. Key to detailed power analyses in Appendix 1	
Table 12. Species of conservation concern recorded on the National Trust estate	
Table 13. Costs of the base programme of volunteer water pollution assessment, monitorir of species of conservation concern and professional wetland plant survey	ng
Table 14. Additional professional and volunteer monitoring of diatoms, macroinvertebrates	
and other groups	
Figures	4.4
Figure 1. Proposed approach to monitoring freshwaters on National Trust properties Figure 2. Broad distribution of Water Framework Directive classified rivers and streams on	1
National Trust properties.	
Figure 3. Broad distribution of lakes (standing waters greater than 2 ha in area) on Nationa Trust properties.	
Figure 4. Clean Water for Wildlife case study: the New Forest, spring 2016	28
Figure 5. Clean Water for Wildlife case study: the R. Ock catchment, Oxfordshire	29
Figure 6. Nutrient monitoring data from the Petworth Estate collected as part of the Clean Water for Wildlife project by National Trust volunteer Stephen Newton	30
Figure 7. Distribution of 'clean' and 'polluted' water in Greater London inside the M25 (from McGoff et al. 2017).	
Figure 8. A simple modelled example of the ability of PackTest nutrient kits to detect landscape wide change in nitrate levels.	
Figure 9. Relationship between Trophic Diatom Index (TDI) and percentage pollution tolera valves (%PTV) against soluble reactive P (SRP).	ant
Figure 10. An example of a Riverfly Record Score.	
Figure 11. Example screen shots from the WaterNet database showing Clean Water for Wildlife records.	
Figure 12. Aquatic plant diversity trends in the Water Friendly Farming project	
Figure 13. Schematic of proposed monitoring approach	
Appendix 1. Power analysis tables	81
Table A1.1. Ponds: power analysis of sample size required at Time ₁ and Time ₂ to	01
detect a change in nitrate concentrations in ponds	82
Table A1.2. Ponds: power analysis of sample size required at time ₁ and time ₂ to dete a change in nitrate concentrations in ponds	ect
Table A1.3. Ponds: power analysis of sample size required at Time ₁ and Time ₂ to	00
detect a change in nitrate concentrations in ponds	84
Table A1.4. Ponds: power analysis of sample size required at time ₁ and time ₂ to dete a change in nitrate concentrations in ponds	
Table A1.5. Ponds: power analysis of sample size required at time ₁ and time ₂ to dete a change in phosphate concentrations in ponds	ect
Table A1.6 .Ponds: power analysis of sample size required at time ₁ and time ₂ to dete a change in phosphate concentrations in ponds	ect
Table A1.7. Ponds: power analysis of sample size required at time1 and time2 to dete	ect
a change in phosphate concentrations in ponds Table A1.8. Ponds: power analysis of sample size required at time ₁ and time ₂ to dete	
a change in phosphate concentrations in ponds	
Table A1.9. Streams: power analysis of sample size required at time ₁ and time ₂ to	
detect a change in nitrate concentrations in streams	90

Table A1.10. Streams: power analysis of sample size required at time ₁ and time ₂ to
detect a change in nitrate concentrations in streams
detect a change in nitrate concentrations in streams
Table A1.12. Streams: power analysis of sample size required at time ₁ and time ₂ to
detect a change in nitrate concentrations in streams
Table A1.13. Streams: power analysis of sample size required at time1 and time2 to
detect a change in phosphate concentrations in streams
Table A1.14. Streams: power analysis of sample size required at time1 and time2 to detect a change in phosphate concentrations in streams 95
Table A1.15. Streams: power analysis of sample size required at time1 and time2 to
detect a change in phosphate concentrations in streams
Table A1.16. Streams: power analysis of sample size required at time ₁ and time ₂ to
detect a change in phosphate concentrations in streams
Table A2. Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a
change in wetland plant species richness
Table A3. Streams: power analysis of sample size required at time1 and time2 to detect a change in wetland plant species richness 99
Table A4. Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a
change in wetland plant species richness 100
Table A5. Streams: power analysis of sample size required at time1 and time2 to detect
a change in wetland plant species richness
Table A6. Streams: Power analysis of sample size required at time1 and time2 to detect a change in Trophic Diatom Index 3
Table A7. Streams: Power analysis of sample size required at time ₁ and time ₂ to detect
a change in Environment Trophic Diatom Index 3
Table A8. Streams: power analysis of sample size required at time1 and time2 to detect
a change in Riverfly ARMI monitoring score
Table A9. Streams: power analysis of sample size required at time1 and time2 to detect a change in Riverfly ARMI monitoring score 105
Table A10. Streams: power analysis of sample size required at time1 and time2 to
detect a change in stream macroinvertebrate taxon richness
Table A11. Streams: power analysis of sample size required at time1 and time2 to
detect a change in stream macroinvertebrate taxon richness
Table A12. Ponds: power analysis of sample size required at time1 and time2 to detect a change in pond macroinvertebrate species richness 108
Table A13. Ponds: power analysis of sample size required at time1 and time2 to detect
a change in pond macroinvertebrate species richness 109
Table A14. Fish in streams: power analysis of sample size required at time1 and time2
to detect a change in fish species richness in streams 110
Table A15. Fish in streams: power analysis of sample size required at time1 and time2 to detect a change in fish species richness in streams
Appendix 2. National Trust Land Condition Assessment Guidance
Appendix 3. Examples of species of conservation concern for which survey methods
have been developed as part of PondNet
Appendix 4. PondNet pond habitat recording form115

1. Introduction

1.1 Background

The National Trust's 10 year strategy includes a number of ambitious targets for the way in which it manages its land and delivers a healthy, beautiful, natural environment. To measure and track progress with this strategy a range of metrics and monitoring approaches are being developed. In many cases these are being developed as part of existing national recording schemes (e.g. national butterfly and plant monitoring schemes). The advantage of linking to these existing schemes is that tested methods exist, there are established reporting and archiving processes and it is possible to place National Trust land within a national context.

There is currently no equivalent national scheme for freshwaters and hence the Trust has identified the need to develop its own approach to monitoring the status of freshwaters across the National Trust estate.

There are two interrelated aims for the proposed freshwater monitoring:

- a) To determine the status of freshwater habitats as important wildlife features in their own right;
- b) To determine freshwater quality as an indicator of how well the National Trust is manging the land and soils on its properties.

At present there are no targets that are specific to (fresh)water so the aim is to provide a general assessment of the status of Trust waterbodies.

In response to a series of initial proposals, the National Trust programme board has agreed that the Trust should adopt a tiered approach to monitoring freshwaters (Figure 1). The Trust will adopt a two-tier approach to national freshwater monitoring which uses statutory agency information on rivers, streams and lakes where data are already collected, typically as part of Water Framework Directive (WFD) monitoring (Tier 1), complemented by a 1 km square stratified sampling approach across National Trust land to assess the condition of smaller running and standing waters (Tier 2). A wide range of information suggests that these smaller waters, which were largely omitted from WFD programmes and of which there are large numbers, make a substantial contribution to freshwater biodiversity and the delivery of freshwater ecosystem services (see, for example, Clarke, 2015 and Biggs et al. 2017). In parallel the Trust also aims to develop some basic guidance for properties wishing to undertake their own assessment of freshwaters (Tier 3) and for those with bespoke project monitoring requirements (Tier 4).

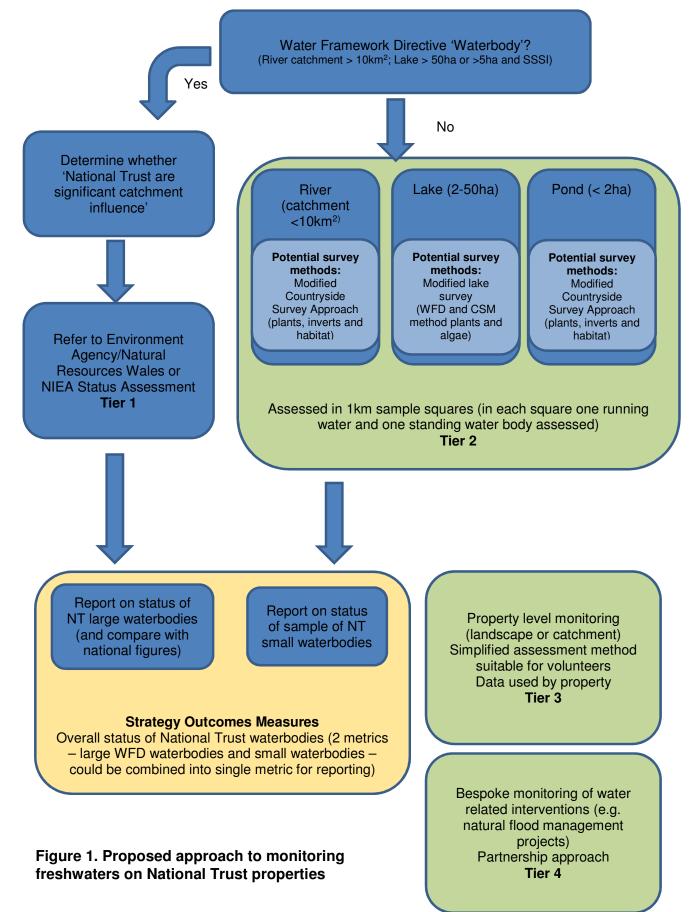
Larger and more significant waterbodies are typically covered in the monitoring programmes of the statutory agencies, primarily for the EU Water Framework Directive¹. These programmes are intended to assess a range of biological and water chemistry parameters to determine the status of a waterbody, built around the concept of the extent to which waterbodies deviate from the natural background or 'reference condition'. There are five status classes (high, good, moderate, poor and bad) and the default target is for good status, in which the 'biological quality elements....show low levels of distortion resulting from human activity, **but deviate only slightly** from those normally associated with the surface water body type under undisturbed conditions'².

Even though there are currently expected to be substantial cutbacks in the monitoring undertaken by the statutory agencies, this monitoring programme will remain the most

¹Given the investment in monitoring programmes and the need to report on river and lake health it seems unlikely that Brexit will have an impact on EU WFD monitoring, at least in the short-medium term. ²<u>http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-</u>756d3d694eeb.0004.02/DOC 1&format=PDF

extensive and detailed analysis of National Trust freshwaters for the foreseeable future. In theory it should provide information on algae, large water plants, aquatic invertebrates and fish at all sites and, even though a large minority of sites still lack all the biological measures, the information provided is of a good standard. It is proposed that the National Trust use these data to provide an assessment of condition where possible.

These external data can only be used for larger or more significant waterbodies (e.g. SSSIs) and in such cases National Trust may only have control over a small proportion of the catchment. As such a tiered approach to freshwater assessment is proposed:


Tier 1) National scale analysis of statutory data to report on larger National Trust waterbodies (requires 'rules' to be developed e.g. NT WFD waters could be defined as rivers or lakes where the Trust owns > 25% of the catchment).

Tier 2) Stratified sampling of smaller National Trust waterbodies (headwater streams, small lakes, less than 50 ha in area, and ponds) based on national monitoring scheme methods (derived from approaches developed in Defra's Countryside Survey). This work should be a mixture of professionally conducted and volunteer-led data collection, the latter where it is clear that volunteer data can provide statistically credible data able to help detect trends in the status of habitats or specific freshwater species.

Tier 3) Property level, volunteer led monitoring of freshwaters using simple assessment methods. (This is supplementary to the national monitoring and is proposed only where properties wish to adopt this).

Tier 4) Bespoke monitoring of particular projects through partnership initiatives which is often likely to be undertaken professionally (e.g. Holnicote natural flood management project).

These four tiers are described in more detail in the rest of this paper. It is important to note that tiers 1 and 2 are proposed as the national approach for measuring water outcomes. Tier 3 property level monitoring is intended to inform property level work but could provide useful context and additional confidence around our national approach. Tier 4 project monitoring falls outside the scope of strategy outcome measurement but is important for wider advocacy, influence and credibility. Figure 1 overleaf outlines the overall approach.

1.2 National Statutory Data (Tier 1)

National Trust has already begun to link Water Framework Directive data to National Trust property data for England. Data for Wales is readily available but work is needed to secure and interpret data for Northern Ireland. Once the Trust has established which waterbodies it wishes to include, and linked these to statutory data, it will be possible to run reports as needed.

This will enable the Trust to compare the status of its waterbodies with the national average and can easily provide regional breakdowns. Many factors affecting the status of waterbodies may be beyond the Trust's immediate control but some simple analysis of national figures will allow results to be presented with appropriate contextual information.

The development of a reporting approach for these Tier 1 data will be undertaken internally by National Trust and is not considered further in this report.

1.3 Stratified Sampling Process (Tier 2)

It is acknowledged that Water Framework Directive data only covers some waterbodies (i.e. is skewed towards so-called 'main river' and larger lakes) and a national overview of freshwaters will require additional information. To monitor the large number of smaller streams, ponds, small lakes and ditches on National Trust land the approaches adopted by Countryside Survey (CS) and the Glastir Monitoring and Evaluation Programme (GMEP) have been explored as a basis for the National Trust programme. Both approaches target 1 km squares and for the freshwater aspects of the survey one pond and one headwater stream are assessed.

In the present report the details of such an approach are further developed using statistical power analyses as the basis for identifying the number of survey sites needed to detect different levels of change.

There are a number of options for sampling but a degree of expertise and training will be required. Sampling could be undertaken either by professional surveyors (either in-house or external partners) or, for some determinands, trained volunteers.

The present report evaluates the advantages and disadvantages of these two alternative approaches, particularly building on the experience of the Freshwater Habitats Trust which has undertaken both national professional and large-scale citizen science-based freshwater surveys.

1.4 Property Engagement (Tier 3)

The proposed approach is focused on securing a national (England, Wales and Northern Ireland) picture of freshwater status across National Trust properties. The sampling approach means that only a minority of properties will actually be monitored but it is anticipated that many will be interested in tracking the health of their waterbodies and may have keen and willing volunteers. Freshwater monitoring is very popular with volunteers and the proposed approach is amenable to simplification and scaling down. As such a third tier of data collection has been considered in which National Trust properties can collect additional data to track their own freshwaters.

A more basic volunteer based approach run by properties would have two functions: a) be a valuable engagement and participation tool and b) provide properties with some basic data about the status of their waterbodies alongside national data. Further National Trust internal work is required to develop this approach. As part of the Riverlands project development the National Trust are working with partner organisations to build on existing citizen science initiatives for freshwater and this work could be rolled out more widely.

Opportunities for training of volunteers in monitoring methods are discussed in more detail in Section 8.

1.5 Bespoke Project Monitoring (Tier 4)

Where the National Trust is undertaking innovative land or water management work it has been recognised that it is important to try and monitor the effect of this with well-designed experiments (e.g. Before-After-Control-Impact design) or monitoring. The Trust will rarely have the resources to do this alone so will need to develop partnerships with other organisations and academics.

National Trust experiences with the Holnicote natural flood management project show that appropriate monitoring can result in projects becoming powerful advocacy tools with widespread interest from government, NGOs and other land managers. Sound evidence is critical in securing wider uptake of such measures. A similar outcome occurred with work on landscape level freshwater biodiversity, undertaken by Freshwater Habitats Trust on and around the Buscot and Coleshill Estate in Oxfordshire, the results of which have become widely cited by freshwater scientists around the world (Williams et al., 2004)

Some recommendations on the principles of monitoring and data collection for evaluating innovative land and water management interventions are given in Section 8.

2. Aims

The current project provides a range of costed options for monitoring freshwaters across the National Trust estate at the Tier 2 level. We expect that the work will also help the development of guidance for Tier 3 and Tier 4.

The project had the following objectives:

- To determine the likely scale of monitoring required to provide a robust assessment of change in National Trust freshwaters during the life of the strategy and beyond (10-20 years);
- To explore a range of monitoring options and estimate the broad costs and benefits of these options;
- To recommend monitoring approaches and data collation/analysis options.

The work reported here has six main components.

1. Review the scale of NT freshwaters requiring monitoring

The number of freshwaters of each type that comprise the National Trust freshwater resource is analysed (the population to be monitored). The analysis focuses on ponds, small lakes, ditches and streams not monitored by the statutory agencies.

These waterbodies, which are the focus of the Tier 2 survey effort, are primarily those that are *not* currently assessed by the statutory agencies (Tier 1).

For rivers, streams and ditches publicly available OS Vector Map District data were used to assess the size of the total resource. For ponds, a national dataset was derived from OS MasterMap data under licence to Natural England. For lakes location information from the GB Lakes database developed by the Environment Agency was used. The extent of rivers, streams and lakes classified under Water Framework Directive was assessed using datasets downloaded from the Environment Agency website. The National Trust estate was identified using a GIS layer made available by the National Trust.

Data were available only for England and Wales. No analysis of waterbodies in Northern Ireland was undertaken.

2. An evaluation of the range of different options for carrying out monitoring.

The options for carrying out monitoring on freshwaters are briefly reviewed and evaluated including:

- Professional versus volunteer monitoring;
- The role of simple water quality test kits versus professional laboratory analysed samples;
- The value of different biotic groups and indices for monitoring trends in the condition of freshwater habitats (e.g. algae, invertebrates, vascular plants);
- The advantages and disadvantages of recording community metrics, indicator species and individual species;
- The role of novel and emerging techniques (e.g. eDNA).

As part of the monitoring process for land management each National Trust property is also expected to undertake a land condition assessment (LCA) at each point of major change. The current LCA methodology includes descriptions for different levels of water health (see Appendix 2).

The potential to incorporate freshwater assessment into the land condition assessment process are evaluated.

3. To determine, using power analyses, the sampling requirements for the range of difference approaches

Existing datasets (e.g. Countryside Survey plant data, Environment Agency national diatom dataset, Freshwater Habitats Trust PSYM dataset) were used, where available, to determine the number of samples required to provide a representative assessment of freshwaters across the National Trust estate at a given level of statistical power.

The analysis also considered different approaches to stratifying the sampling design (e.g. single national sample, country stratification, upland vs lowland stratification).

4. Develop a matrix of options with details of costs, frequency, delivery options (e.g. professional versus volunteer)

A matrix of survey options, with alternative delivery methods, is described and presented with indicative costs and a simple assessment of the relative merits or otherwise of each approach.

5. Recommend options for collating, analysing and archiving data

Opportunities to feed data into existing recording schemes are described, and options explored for data collation. Recommendations are also made for potential approaches to data analysis and reporting.

6. Make suggestions for monitoring particular sites or particular interventions

As national monitoring scheme do not automatically capture change and inform management at key sites, recommendations about particular monitoring needs for key sites are made and other opportunities to capture useful information identified (e.g. through the Riverlands programme).

3. A review of the scale of National Trust freshwaters requiring monitoring

3.1 What are freshwaters?

In this report we use the following definitions of waterbodies, most of which were first developed by Brown *et al.* (2006):

- Ponds Waterbodies between 25 m² and 2 ha in area which may be permanent or seasonal (Collinson *et al.*, 1995). Includes both man-made and natural waterbodies.
- Lakes A body of water >2 ha in area (Moss *et al.*, 1996). Includes reservoirs and gravel pit lakes.
- Streams Small lotic waterbodies created mainly by natural processes. Marked as a single blue line on 1:25,000 Ordnance Survey (OS) maps and defined at this map scale by OS as being less than 8.25 m in width. Streams differ from ditches by: (i) usually having a sinuous planform; (ii) not following field boundaries, or if they do, pre-dating boundary creation; (iii) showing a relationship with natural landscape contours, e.g. running down valleys.
- Rivers Larger lotic waterbodies, created mainly by natural processes. Marked as a double blue line on 1:25,000 OS maps and defined by the OS as greater than 8.25 m in width at this map scale.
- Ditches Man-made channels created primarily for agricultural purposes, and which usually: (i) have a linear planform; (ii) follow linear field boundaries, often turning at right angles; (iii) showing little relationship with natural landscape contours.
- Springs Locations where groundwater emerges for at least some part of the year to make a surface water flow (Biggs *et al.*, 2016).
- Flushes Areas where the flow of ground water onto the surface is more diffuse, either below a spring or where water flows widely over the surface of saturated ground rather than in a well-defined channel. Flushes can be areas of open, stony ground with only a sparse plant cover or have a complete and often dense cover of flowering plants, usually sedges or rushes, with the bryophytes forming a ground layer under this canopy (Plantlife, 2009).

Other wetlands, such as fens and mires, are not included in the present project.

Table 1. Length / number of waterbodies on the National Trust estate in England and Wales, monitored and unmonitored by Environment Agency

Waterbody type	Number or length in km	Monitored (length, km or number)	Unmonitored (length, km or number)
Rivers and streams	708 km	708 km	-
Non-WFD linear water courses (includes rivers, streams and ditches) ¹	6683 km	-	6683 km
Ponds	3766	Not	known
Lakes	97	57	40

¹Linear waterbodies are the combined OS waterline and water surface area layers. The surface area segments treated as rivers, streams or ditches were 5000 m or longer and those having length/area ratios of less than or equal to 5.

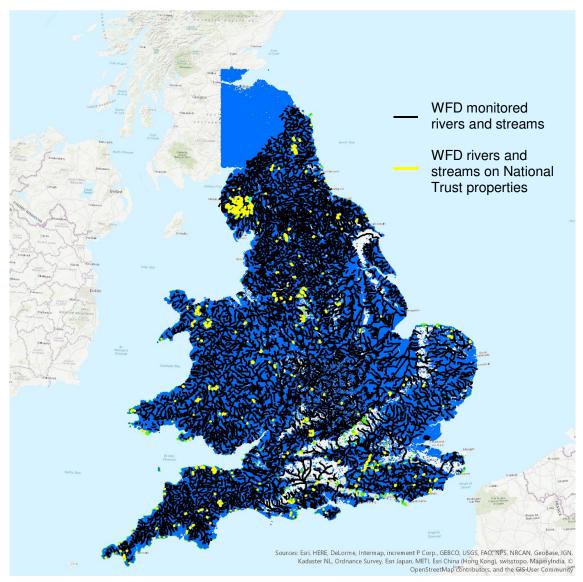
3.2 Waterbodies on the National Trust estate

The National Trust has around 7000 km of linear waterbodies (rivers, streams, ditches) on its estate and about 4000 ponds and lakes.

3.2.1 River, streams and ditches

Of the linear watercourses, the ecological quality of just over 700 km on the National Trust estate are classified under the Water Framework Directive. There are about 6700 km of unmonitored watercourses on the National Trust estate shown by Ordnance Survey mapping. This high proportion of unmonitored compared to monitored linear watercourses is normal for the British landscape.

In this analysis, for simplicity we did not separate linear waterbodies into rivers, streams and ditches. Classification of waterbodies into these three categories would require more detailed GIS work than was possible within the time constraints of the present project.


3.2.2 Ponds and lakes

Ordnance Survey mapping shows c.3700 ponds on National Trust properties. Very few of these ponds are regularly monitored with a small number included in existing Freshwater Habitats Trust surveys (e.g. Flagship sites such as Cock Marsh, Runneymede and the Begwyns).

Ordnance Survey mapping shows just under 100 lakes (standing waters of 2 ha or more in area) on National Trust property. More than half of these waterbodies are included within the Water Framework Directive monitoring network.

We did not include springs and flushes as water layer information that is publicly accessible does not contain information on these features.

The broad distribution of the rivers and streams classified under the Water Framework Directive on National Trust properties is shown in Figure 2. The broad distribution of all lakes on National Trust properties is shown in Figure 3. Named lakes on National Trust properties are listed in Table 2 and those monitored under the Water Framework Directive and located on National Trust properties in Table 3.

Figure 2. Broad distribution of Water Framework Directive classified rivers and streams on National Trust properties.

Rivers and streams highlighted in yellow are monitored under Water Framework Directive and lie within National Trust property boundaries. Waterbodies in black are monitored for Water Framework Directive and lie outside the National Trust estate. There are 296 separate stream and river waterbodies on National Trust estate land with a total length of 708 km (Table 1).

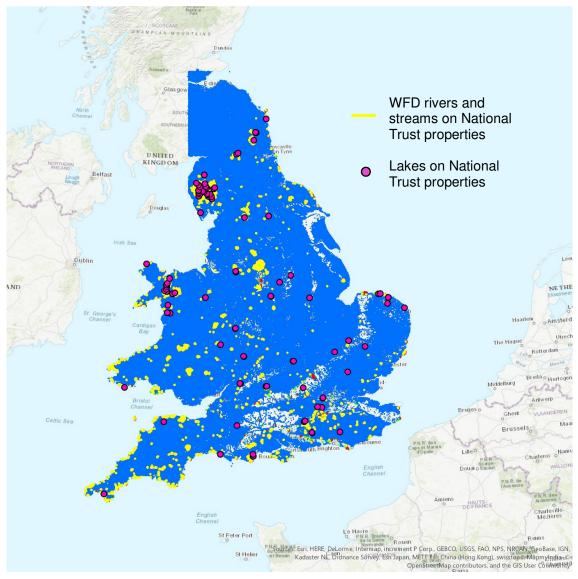


Figure 3. Broad distribution of lakes (standing waters greater than 2 ha in area) on National Trust properties.

There are 97 separate lakes on National Trust properties, shown as red circles (Table 2). Water Framework Directive monitored streams and rivers on the National Trust estate are highlighted in yellow.

Table 2. Lakes on the National Trust estate in England and Wales, derived from GB Lakes database

Lake	Lake	Lake
Angle Tarn	Loughrigg Tarn	Unnamed lake at SO883442
Berrington Pool	Low Tarn	Unnamed lake at SO879446
Blea Tarn	Loweswater	Unnamed lake at TL332517
Blelham Tarn	Malham Tarn	Unnamed lake at TL818604
Bosherton Lily Ponds	Melchett Mere'	Unnamed lake at TL556698
Broomlee Lough	Moss Eccles Tarn	Unnamed lake at SO744888
Brothers Water	Nelly's Moss Lakes	Unnamed lake at SO747892
Brownsea Island Lake	Nelly's Moss Lakes	Unnamed lake at TG176292
Burnmoor Tarn	Over Water	Unnamed lake at SK933381
Buttermere	Oxford Water	Unnamed lake at SJ269386
Cemlyn Bay Nature Reserve'	Rothley Lakes	Unnamed lake at TG190388
Clumber Lake	Scoat Tarn	Unnamed lake at SK317403
Crag Lough	Sprinkling Tarn	Unnamed lake at SK311408
Crummock Water	Tarn Hows	Unnamed lake at SH746444
Derwent Water	Tatton Mere	Unnamed lake at TG062447
Ffynnon Lloer	The Lake	Unnamed lake at SE280691
Frensham Great Pond	The Loe	Unnamed lake at SD190748
Frensham Little Pond	Wast Water	Unnamed lake at NU068026
Great Barnett	Watendlath Tarn	Unnamed lake at NU241241
Great Pond	Yew Tree Tarn	
Horsey Mere	Unnamed lake at SZ034850	
Bosherton Lily Ponds	Unnamed lake at SY508879	
Little Langdale Tarn	Unnamed lake at SU971221	
Little Sea	Unnamed lake at SU969231	
Llyn Anafon	Unnamed lake at TQ418239	
Llyn Bochlwyd	Unnamed lake at ST772340	
Llyn Conwy	Unnamed lake at SS604401	
Llyn Cwmffynnon	Unnamed lake at TQ129630	
Llyn Dinas	Unnamed lake at TQ060641	
Llyn Gwynant	Unnamed lake at TQ145778	
Llyn Idwal	Unnamed lake at TQ148784	
Llyn Llagi	Unnamed lake at SU831944	
Llyn y Bi	Unnamed lake at SU237966	
Llyn y Gadair	Unnamed lake at SU248969	
Llyn yr Adar	Unnamed lake at SO829009	
Llynnau Cregennen	Unnamed lake at SO820013	
Llynnau Cregennen	Unnamed lake at TL540198	
Llynnau Gamallt	Unnamed lake at SP678370	

Table 3. Lakes monitored by the Environment Agency or Natural ResourcesWales on the National Trust estate in England and Wales for WFD

Lake	Lake
Ardingly Reservoir	Llynnau Gamallt
Blea Tarn	Loweswater
Blelham Tarn	Malham Tarn
Bosherton Lily Ponds (Central Arm)	Melchett Mere
Bosherton Lily Ponds (Eastern Arm)	Over Water
Bosherton Lily Ponds (West Arm and Central)	Scoat Tarn
Broomlee Lough	Staunton Harold Reservoir
Brothers Water	Tarn Hows
Burnmoor Tarn	Tatton Mere
Buttermere	The Loe
Clumber Lake	Ticknall Quarries
Clumber Park Lake West	Ullswater
Cod Beck Reservoir	Wast Water
Coniston Water	Wessenden Head Reservoir
Crag Lough	Wessenden Reservoir
Crummock Water	Windermere (N Basin)
Derwent Water	Windermere (S Basin)
Elter Water	
Ennerdale Water	
Esthwaite Water	
Fontburn Reservoir	
Frensham Great Pond	
Frensham Little Pond	
Grasmere	
Hayeswater	
Horse Coppice Reservoir	
Horsey Mere	
Kedleston Hall Lower Lake	
Little Langdale Tarn	
Little Sea	
Llyn Anafon	
Llyn Bochlwyd	
Llyn Conwy	
Llyn Cregennen Lower	
Llyn Cregennen Upper	
Llyn Cwmffynnon	
Llyn Gwynant	
Llyn Idwal	
Llyn Llagi	
Llyn Ogwen	

4. Options for carrying out monitoring of National Trust freshwater habitats

4.1 Introduction to monitoring methods

Monitoring of the water environment has traditionally been led in England and Wales by statutory agencies assessing the effect of pollution on rivers, larger streams and canals. The first comprehensive national surveys in England and Wales using biological metrics to assess the condition of rivers date back to the 1970s (Department of the Environment and The Welsh Office, 1971), although earlier regional surveys had been undertaken. There has also been a long tradition of assessing the composition and abundance of fish populations for the purpose of promoting and managing fisheries.

More recently, since about the mid-2000s, traditional approaches focused on pollution control have developed, under the auspices of the Water Framework Directive, to be concerned more with maintaining the overall ecological health of freshwaters. The Water Framework Directive has established in practice a broadly adopted scientific view that protecting the water environment should be evaluated against objective baselines, variously called 'minimally impaired conditions' or 'reference conditions'.

The regulations developed in the Water Framework Directive are amongst the most comprehensive and demanding in the world. However, they were largely conceived and put into place before a wide body of work which has demonstrated the importance of small waterbodies, both flowing and still, which it is increasingly clear play a major role in protecting freshwater biodiversity and influencing the way freshwater ecosystem services are delivered and exploited (Biggs *et al.* 2017). The importance of small waters began to be noticed in the mid-1990s and gathered speed with research undertaken in the early 2000s. The importance of small waters was first recognised in UK legislation by the inclusion of ponds and headwaters as Priority Habitats in 2006 Natural Environment and Rural Communities Act. Since then, policy has continued to develop in this area as a wider range of people and organisations have become interested in the role and importance of smaller waters.

Although current state-led monitoring of the water environment in England and Wales is amongst the best developed in the world, and the network of monitored sites extensive, large parts of the water environment are still little, if at all, monitored. The condition of these overlooked, mainly smaller, waterbodies is assessed from a rather patchy network of monitoring programmes, mainly implemented through the Countryside Survey and related work, and more recently through the PondNet programme established by Freshwater Habitats Trust, building on earlier projects.

Monitoring of the water environment has contrasted with that of the land environment in being largely undertaken by professional organisations. Unlike the land environment, volunteer naturalists have played a smaller part to date in evaluating the condition of freshwaters and the status of freshwater species. There have been no regular updates of the condition of freshwater habitats undertaken by NGOs and, with the exception of water birds, no regular updates by NGO-based projects of the status of individual species of conservation concern, other than otter and water vole.

As a consequence, describing adequately the status of freshwater habitats and species in assessments such as the State of Nature report has been difficult. Overall, a large proportion of the water environment, and most freshwater species of conservation concern, are not monitored and evaluations based mainly on the river and large lake network are often unrepresentative of the freshwater environment and its biodiversity as a whole.

In many landscapes this leads to high quality smaller waters, both still and flowing, being under-represented leading to insufficient attention being paid to their importance and protection. Conversely, the focus on larger waters typically facing the most intractable

problems limits progress on 'easy wins' such as protecting and building downstream from clean headwaters, building out from freshwater biodiversity hotspots through floodplain and wetland restoration or creating new clean water habitat by making unpolluted ponds or adding new physical habitat (woody vegetation, diversified channel structures) to unpolluted rivers.

With a trend towards increasing involvement of non-specialists and 'citizen scientists' in monitoring there has been a growing interest in volunteer recording of freshwaters. For a range of freshwater species and species groups several recording schemes provide information which is used to establish conservation status. However, with the exception of some water birds, until recently none of the surveys undertaken by volunteers have had sufficient repeatability and statistical power to provide data which can be reliably used by policy makers, regulators or land managers to assess trends in waterbody or species status.

4.2 'Professional' monitoring methods

The most widely used professional biological survey methods for assessing the condition of freshwater habitats are based on aquatic macroinvertebrates, larger water plants, algae and fish, and they are now the main biological metrics now of the Water Framework Directive (Table 4).

The longest established of these are macroinvertebrate survey methods. Assessment of fish populations has a slightly different tradition compared to plant and invertebrate-based monitoring in as much as it has been focused more on the status of individual species of interest to anglers, rather than the condition of fish assemblages. Special monitoring programmes of salmonid fish of particular concern, such as Atlantic Salmon, are undertaken by professional surveyors and provide some of the most detailed information on any species.

The technical skills and time needed to make assessments using these methods makes them largely unsuitable for non-specialists if reliable monitoring data are required. Simplifications of invertebrate survey methods have been developed (e.g. Riverfly surveys, Big Pond Dip freshwater invertebrate survey) but they have had little detailed methodological testing to date. None as yet provide data that can be used to measure trends in the quality of the water environment.

4.3 Volunteer-based freshwater survey schemes

Volunteer-based freshwater recording schemes are primarily focused on species, and only two current surveys provides long-term trend data: the BTO-led Wetland Bird Survey (often known by its acronym WeBS) and the Waterways Breeding Bird Survey. The recently established PondNet great crested newts eDNA survey also provides the foundation for long-term trend monitoring having now completed its first three years, with further survey work planned for 2018. This survey also provides technically credible national statistics for England.

4.3.1 BTO wetland and water bird surveys

The BTO Wetland Bird Survey is concerned with larger coastal and inland wetland sites, including some National Trust properties. More relevant to most National Trust estates is the Waterways Breeding Bird Survey which has reported trends in the populations of water birds since 1998. Despite the quality of this recording scheme it appears to lead to little practical action, and surprisingly few organisations other than BTO promote its use for assessing the status of freshwaters.

4.3.2 Surveys of other groups

Volunteer-based recording schemes currently include schemes concerned with invertebrates (e.g. dragonflies, water beetles, cladocerans), vascular and lower plants, amphibians and mammals. Data on dragonflies are sufficiently numerous for long-term trends to be estimated since 1980 (Cham *et al.* 2014).

Table 4. Species and species groups which have existing (a) professional and (b) volunteer-led recording schemes

(a) Professional monitoring of f	(a) Professional monitoring of freshwater biota		
Aquatic macroinvertebrates	Mainly recorded at family level in surveys undertaken by statutory agencies.		
	Countryside Survey headwater project worked at species level and is the only national stream monitoring programme to have worked consistently at species level.		
	In lakes, chironomid pupal exuviae used to assess lake condition		
Zooplankton	The animal plankton of lakes are amongst the most intensively studied animals in the world by professional freshwater biologists. However, for various reasons they have not yet been routinely adopted for monitoring schemes in Europe, although lake biologists have indicated strong benefits of such an approach (Jeppesen et al. 2011)		
River plants, including non- vascular plants	Regular monitoring started with Water Framework Directive		
Diatoms and phytoplankton	Regular monitoring started with Water Framework Directive		
Fish	Extensive programmes of survey undertaken by statutory agencies but mostly do not provide monitoring trend data, except for salmon and sea trout.		
Salmon, Arctic Charr, other fish rare species	Individual monitoring of salmon and sea trout provides detailed trend data but no other widespread fish are monitored in a way which provides national or regional trend data.		
	Rare fish with limited distributions have some regular site specific monitoring programmes.		

Table 4. Species and species groups which have existing (a) professional and (b) volunteer-led recording schemes (continued)

(b) Volunteer-based schemes		
Water and wetland birds	Well-developed population trend scheme for widespread wetland species and species associated with 'waterways'. There is also a large-scale and long-established programme monitoring major coastal and inland waterbird sites and many conservation bodies are involved in work to protect these species and their habitats. Perhaps surprisingly, although waterway birds are amongst the best monitored freshwater biotic groups, very few practical programmes are specifically concerned with implementing measures to influence waterway bird populations (e.g. Dipper, Grey Wagtail, Common Sandpiper) even though a significant number are showing long-term declines.	
Great Crested Newt	eDNA survey is first national survey to follow a stratified random design for an aquatic species. Other long-running species surveys have developed through more ad hoc structure although birds and otters have an element of structuring and a planned approach.	
Amphibians	National Amphibian and Reptile Recording Scheme (NARRS) provides data on the status of the widespread amphibians other than Great Crested Newt. NARRS does not include Natterjack Toad which is monitored in a separate national scheme by Amphibian and Reptile Conservation.	
Otter	Regular national recording scheme which has tracked recovery of population. Last surveyed in 2005.	
Water vole	National scheme recording distribution with data used to assess trends although information not collected in a systematic (i.e. stratified random) design.	
Dragonflies	The most popular group of aquatic invertebrates with well- developed distribution mapping based primarily on surveys of adult distribution patterns. Results have been used to assess long-term trends in species through interpretation of distribution data using advanced statistical techniques.	
Water beetles	A well-established national recording scheme which provides a strong basis for assessing conservation status of species. For some species trends are apparent but has not yet been used to comment on broad trends for monitoring although it is quite likely it could be.	
Cladocerans	A small national recording scheme which can provide information on the relative scarcity of species but not yet enough to describe trends. See: <u>http://www.boxvalley.co.uk/nature/cladocera/dmap.asp</u>	

Table 4. Species and species groups which have existing (a) professional and (b) volunteer-led recording schemes (continued)

(b) Volunteer-based schemes		
Diptera	A small group of highly skilled recorders come together as the Dipterists Forum running and contributing to monitoring schemes for several groups of flies that are associated with freshwater habitats.	
Water plants including stoneworts and aquatic ferns.	Distribution mapping to create atlases provides data on the changes in distribution of wetland plants which can be used to categorise species of conservation concern. Newly established national monitoring programme (National Plant Monitoring Scheme) will probably not be specifically orientated to water sufficiently to capture changes in specific waterbodies.	
Lower plants	Recording scheme enables conservation status of species to be determined but does not provide evidence for regular monitoring.	
Algae	Recent development of the RAPPER app to record data on algal bloom occurrence (see <u>https://www.ceh.ac.uk/news-</u> <u>and-media/news/bloomin-algae-new-app-help-reduce-public-</u> <u>health-risks-harmful-algal-blooms</u>)	

Recommendation 1: We recommend that National Trust encourages recording of all of freshwater biota which currently have active monitoring groups (e.g. dragonflies, cladocerans, water plants) to add to inventories of these species. This should be done by facilitating access to National Trust properties and actively encouraging recording groups to visit the Trust's properties. At individual sites information on changes in species occurrence, distribution and abundance are likely to be useful for site management even though they are unlikely to provide monitoring data that can be used to report on the overall condition of the Trust's freshwaters.

4.4 Recording of species of conservation concern

As part of the Important Freshwater Areas project, Freshwater Habitats Trust, in consultation with relevant species specialists, has created a list of c1000 freshwater species of conservation concern (vascular plants, stoneworts, invertebrates, vertebrates) that is being used to identify sites of importance for freshwater biodiversity. Other data sources included in the Important Freshwater Areas process are habitat related Water Framework Directive information, PSYM surveys of ponds (Biggs et al., 2000), the locations of sites designated for the freshwater interest and environmental data (such as waterbodies with phosphorus levels at High status) which are often surrogates for the ecological quality of freshwaters.

Recording of species of conservation concern would provide a valuable focus for assessing the success in maintaining the distribution of sensitive freshwater biota and higher quality freshwater systems, for which the National Trust estate provides an important refuge.

As part of the PondNet programme specific monitoring techniques have been developed and tested for about 30 species which are suitable for volunteer monitoring. Details of these methods are shown in the relevant section of the Freshwater Habitats Trust website (see:

<u>https://freshwaterhabitats.org.uk/projects/pondnet/survey-options/</u>). Table lists the currently (2017) identified species of conservation concern.

Recommendation 2. We recommend that freshwater species of conservation concern should be mapped across the National Trust estate as part of a process to identify Important Freshwater Areas on the Trust's land.

4.5 Monitoring water quality

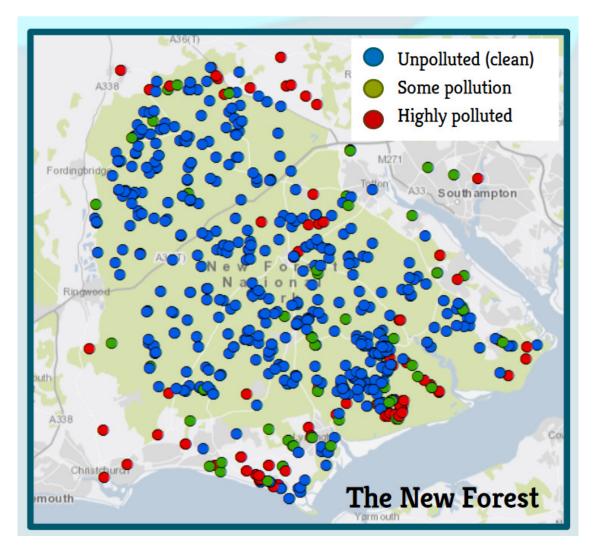
England and Wales have a large scale programme of professional laboratory-analysed water quality monitoring for rivers and larger streams, some lakes and some specially protected smaller standing waters.

Despite this, most smaller streams, ditches, ponds and small lakes are never monitored, and very little is known about their current chemical quality or about trends in their chemical quality.

In the monitored network of running waters there is a long tradition of measuring the physical and chemical parameters indicative of organic pollution (dissolved oxygen levels, biochemical oxygen demand and ammonia) as well as nutrients and some heavy metals. Measures which describe the alkalinity/acidity of water (e.g. pH, conductivity) and concentrations of calcium and other dissolved ions which are not in themselves pollutants, are also commonly measured.

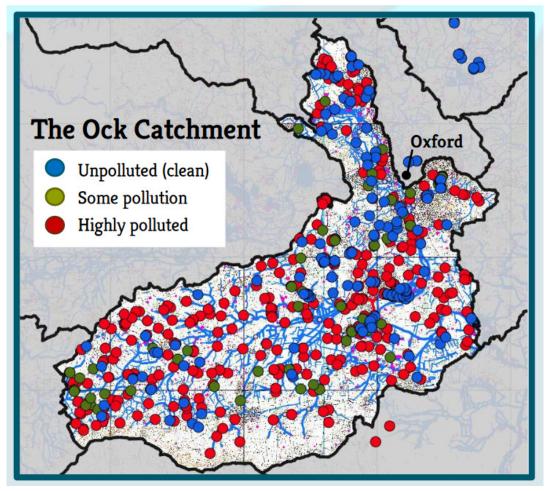
Typically to measures all of these determinands in a professional laboratory analysis costs £60-100 per sample, excluding the cost of collecting and transporting the samples.

Where funds are not available for laboratory analysis a useful start to understanding the extent of pollution can be made with rapid nutrient test kits which are used in the field and provide an assessment of water quality in a few minutes. Extensive use has been made of the PackTest nutrient kits produced by the Japanese company Kyoritsu in the Clean Water for Wildlife project, run as part of Freshwater Habitats Trust's 'People, Ponds and Water' project. This work is providing valuable data for evaluating the extent of nutrient pollution at thousands of sites across England and Wales. The use of the PackTest kits, and their reliability, has been described in detail in the Clean Water for Wildlife technical manual (Biggs et al. 2016).

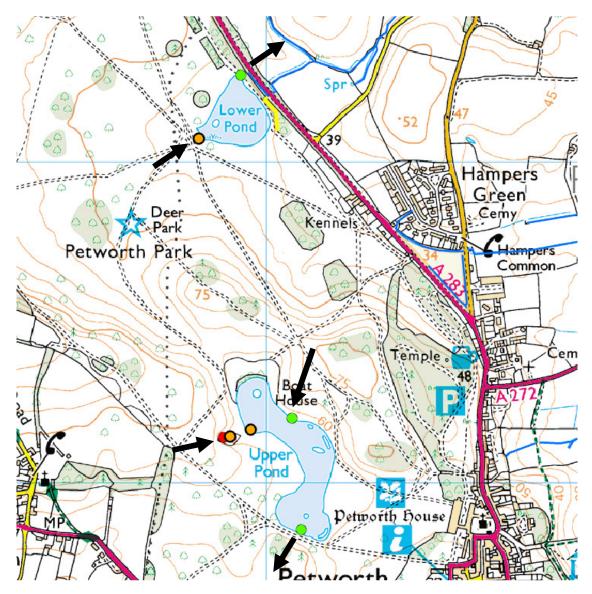

Measurements of nutrients are a useful indicator of the presence of pollution because: (i) nutrients are important pollutants of freshwaters, (ii) very large numbers of waterbodies are affected by nutrients and (iii) they are more easily measured than other chemicals and provide a proxy for a range of pollutants. Where nutrient levels are elevated, other pollutants may also be present (e.g. pesticides from farmland, ammonia from sewage works, heavy metals from road runoff).

The Clean Water for Wildlife project has demonstrated the potential of this approach for evaluating water quality at both landscape and site scale. For example, the method has provided a clear indication of the extent of high quality waters across the New Forest (Figure 4), and how this contrasts with more intensive landscapes such as the R. Ock catchment in Oxfordshire (Figure 5).

At smaller scales there are many examples from all over the country of the use of the test kits to help with site management decisions. One recent set of samples collected at the National Trust Petworth Estate indicates some of the ways in which the kits can start to inform site management, laying foundations for more detailed chemistry (Figure 6).


At Petworth Park autumn measurement of nutrient levels on two lakes suggests that there is a point phosphate source in the inflow to Upper Pond, but phosphate sources are otherwise low. Nitrate is detectable in the inflows at several locations, but both nutrients are undetected in the lake outflows in the autumn. Further measurements in winter or early spring would be useful to assess whether there is seasonal variation. Overall, the application of rapid nutrient test kits is opening-up new opportunities to democratise and empower both non-specialists and professional bodies in evaluations of the extent of water pollution. The rapid test kits are particularly important in monitoring smaller waters which are often excluded from statutory monitoring programmes.

Recommendation 3. We recommend that to provide an initial assessment of the extent of water pollution on National Trust properties, Kyoritsu rapid nutrient PackTest kits are used to measure nitrate and phosphate levels. These test kits have been widely used by both volunteer and professional biologists in Freshwater Habitats Trust's Clean Water for Wildlife project, including on National Trust properties.


Figure 4. Clean Water for Wildlife case study: the New Forest, spring 2016.

The Clean Water for Wildlife test kits clearly show how water quality, measured in terms of nutrient levels, is high across the New Forest. There is probably no other area in lowland England with such a large concentration of clean water sites, and this large extent of water free from substantial pollution plays a major role in the continued exceptional biological quality of New Forest freshwaters.

Figure 5. Clean Water for Wildlife case study: the R. Ock catchment, Oxfordshire.

The R. Ock catchment is typical of much of lowland England in that clean water is largely confined to ponds and lakes, within high quality fens (SACs and SSSIs), some ditches and some headwater streams in woodland. An important use of the test kits is to indicate the extent of clean water in landscapes where their distribution was not previously identified, and to provide a rapid overview of the water quality of the whole catchment.

Figure 6. Nutrient monitoring data from the Petworth Estate collected as part of the Clean Water for Wildlife project by National Trust volunteer Stephen Newton.

Two surveys in autumn 2017 suggest that nitrate levels fall as water passes through the Upper and Lower Ponds. Arrows indicate inflow and outflow locations from the two waterbodies (which are technically lakes at 6 ha and 3 ha in area).

4.6 Advantages and disadvantages of professional and nontechnical methods

In this section the main advantages and disadvantages of different monitoring methods for freshwaters are briefly review. Conclusions about the effectiveness of different approaches are presented.

4.6.1 Professional versus volunteer surveyors

Professional surveyors

Measures which involve a good taxonomic understanding of a range of taxa and experience of survey methods normally require professional biologists, or those with professional level experience. For biological surveys, this means that metrics based on listing species or taxa (e.g. PSYM, the Predictive System for Multimetrics for assessing ponds and small lakes up to 5 ha; RICT, the River Invertebrate Classification Tool used by the statutory agencies) are normally undertaken by professional staff. Freshwater monitoring has a substantial number of these metrics and a rigorously defined set of standards and methods, often governed by ISO or CEN standards³.

The use of professional surveyors should ensure repeatable surveys, a good standard of survey with between-operator error reduced, a detailed grasp of the monitoring objectives and sufficient time to undertake demanding surveys. The only exception to this general rule at present is the recording of birds where a large body of skilled amateurs exists and it is generally accepted that volunteers can be trained to record a wide range of species.

Volunteer surveyors

Volunteer surveyors are likely to be more numerous than professional surveyors but mostly have less time, substantially less experience and less-developed skills than professional surveyors.

Volunteers do not require payment but organising volunteer surveys usually requires at least as much effort as organising professional surveys, and in cost terms the differences between the two may not be all that significant. A potential advantage of using volunteer surveyors is that for some funders (especially the Heritage Lottery Fund) it is possible to count some surveyor time as equivalent to a cash funding contribution.

Volunteers are more likely to be suited to surveys which do not require wide taxonomic experience – making single species, or surveys involving a small number of taxa (say, less than 10) more suitable for this group. Even in this situation it is important to quality assure work as finding cryptic species may still be a skill which requires considerable practice. Recent experience indicates that volunteers working in freshwater find testing water for pollution interesting and satisfying, including collecting eDNA samples for later analysis. Many surveyors enjoy collecting freshwater invertebrate samples from rivers and ponds but undertaking this work in way which provides valuable data, when compared to the widely used professional pond net invertebrate sampling methods, remains problematic. In the PondNet project it has also been possible to get small numbers of volunteers engaged in looking for individual rare species and for amphibians, with the recording of frogspawn a popular activity.

It is often exaggerated how effective volunteers are in recording freshwater biota. Lessons from the PondNet project are, therefore, important in understanding what volunteers find more difficult, where it has been more difficult to get volunteers to undertake comprehensive plant surveys and invertebrate surveys. In contrast, the collection of eDNA and other water samples has proved highly successful, allowing the establishment of the world's first national monitoring programme for a protected species, the great crested newt, using eDNA.

³ISO = International Organization for Standardization; CEN = European Committee for Standardisation.

Volunteers usually require more support than professional surveyors, commonly needing to be 'part of the team', something which is implicit in a professional organisation but which requires substantial support and effort to replicate for volunteers.

What is a volunteer?

There is a considerable gradation in what constitutes 'volunteers'. The long tradition of conservationists doing work for the love of the activity means that highly skilled professional biologists may be available as volunteers. However, such people usually only make up a small part of the labour force in volunteer monitoring projects. Despite this, the contribution to be made by highly skilled specialists at sites with which they have a particular engagement should not be overlooked, and may be important at critical locations.

4.6.2 Simple water quality test kits compared to laboratory analysis

Recently there has been considerable interest in the use of 'quick' water test kits. Projects run by Freshwater Habitats Trust and Earthwatch have introduced the use of these kits by volunteers to evaluate the occurrence of water quality and, particularly, nutrient pollution (see Section 4.5 above). A detailed evaluation of the Kyoritsu nitrate and phosphate test kits was undertaken by Freshwater Habitats Trust as part of a project funded by Earthwatch and later the HLF (Biggs *et al.* 2016).

Detailed comparisons of the PackTest kits with laboratory analysed water samples showed that, overall, the kits can separate clean and polluted sites with sufficient reliability. Sites where the kits show no colour change are highly likely to be clean waterbodies with low nutrient levels (98% probability for phosphorus, 81% for nitrate). Sites with a moderate or strong colour change are highly likely to be polluted (95% probability for phosphate, 84% for nitrate). However, about a third to a half of the sites bordering the clean water boundary (phosphate: 0.02-0.05 mg L⁻¹, nitrate 0.2-0.5 mg L⁻¹) may be mildly polluted, rather than clean. This means that at landscape scale, the kits will slightly over-estimate the amount of clean water present, but they are highly unlikely to over-estimate the level of either phosphate or nitrate pollution in waterbodies. At sites which should naturally have very low nutrient levels - especially acid streams and lakes, both lowland and upland - they should be used with caution.

Overall, although it is important to recognise the limitations of the PackTest kits, our results suggest that they are a simple, rapid and cost-effective way to identify nutrient pollution, especially in large landscape-wide surveys where the costs of laboratory analysis are likely to be prohibitive. The kits are not recommended for ongoing monitoring to detect trends at a single site; in such cases more expensive laboratory based analysis will be required, unless the changes are expected to be very substantial. For example, a change in phosphate concentrations from 0.5 mg L⁻¹ down to 0.02-0.05 mg L⁻¹, should be reliably detected, but smaller changes are less likely to be detected, given the sensitivity of the test kits and the extent of natural variation.

A number of Rivers Trusts have also been using rapid water quality test methods and a resource pack has been produced introducing the many different types of water testing equipment available for use outside of the laboratory (The Rivers Trust, 2016). In the Clean Water for Wildlife project large-scale surveys of whole catchments have provided important overviews of landscape and catchment level water quality at relatively low cost and these data are now beginning to inform practical conservation projects.

To date these methods have not been widely used to provide monitoring or trend data, mainly because they have only been very recently introduced and there has not yet been time to run programmes over a period of years to detect change. However, there is evidence that they can provide valuable data for the assessment of practical problems, providing datasets which cannot easily be obtained by other means. For example, in Greater London McGoff *et al.* 2017 have shown that, counter to expectations, substantial numbers of waterbodies with low levels of nutrient pollution occur, even within large metropolitan areas (Figure 7).

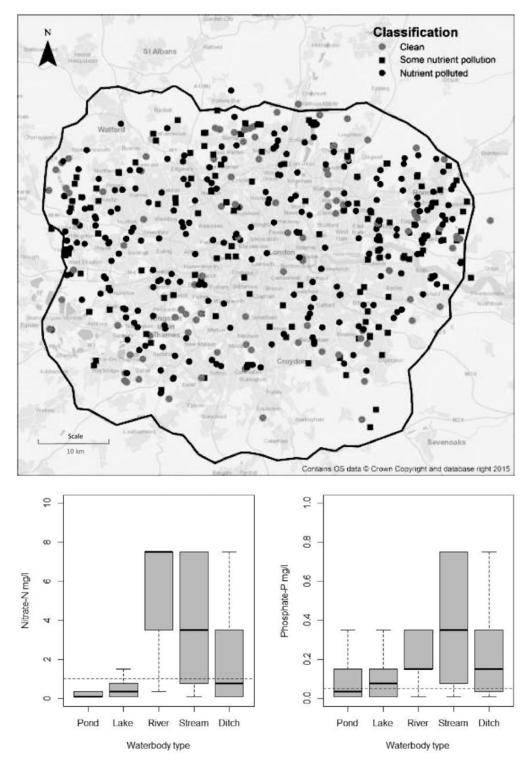


Figure 7. Distribution of 'clean' and 'polluted' water in Greater London inside the M25 (from McGoff et al. 2017).

Nutrient levels were significantly lower in standing waters (ponds and lakes) and in ditches.

4.6.3 Different biotic groups and indices (e.g. algae, invertebrates, vascular plants)

Four main biological groups are now widely monitored as part of Water Framework Directive and similar (e.g. PSYM) monitoring schemes: algae (including both diatoms and phytoplankton), the large aquatic invertebrates, vascular plants and fish (Table 5). The community metrics generated from surveys based on these four groups describe responses to organic pollution, nutrient pollution, the presence of toxins and habitat quality.

At present none of these metrics can be readily collected on a large scale by nonprofessional recorders. Equally, none of the metrics listed in Table 5 which can be collected by volunteers are currently used as part of formal monitoring projects, such as those required for Water Framework Directive reporting.

4.6.4 Community metrics, indicator species and individual species surveys

Community metrics

Community metrics (Table 5), which are typically derived from monitoring a suite of taxa (e.g. plant species, invertebrate families), are generally the most reliable measures for monitoring change, with high statistical power from relatively small samples. However, to be effective they must normally be created using data collected by professional surveyors.

One potential exception to this general rule is the Riverfly survey technique, in which 8 Order or Family level invertebrate groups are recorded and counted. Although widely used in involving people in checking the occurrence of severe water pollution events (e.g. Thompson *et al.* 2016), the method has not been formally evaluated against standard river invertebrate survey techniques as far as we are aware. A large set of data have been recorded and in Section 4 we have undertaken preliminary power analysis on these data. However, it should be noted that formal quality assurance of this technique is still required, something which would be valuable in the course of further application of the method.

Indicator species

There are a range of prominent, and usually easily identified, species which are sometimes described as 'indicators' of the health of freshwaters. Typical candidates for this role are large vertebrates (e.g. otter, salmon, water vole, great crested newt), *Gammarus* species and dragonflies, amongst others. In practice it is very difficult to demonstrate that protecting single indicator species has practically benefitted other groups or species and to achieve specific species or community objectives, it is normally best to focus on those specific objectives.

The otter is perhaps the best example of this phenomenon. During its post 1970 recovery (Crawford, 2011), there has been a collapse of the water vole population⁴, salmon numbers have dropped substantially, many water plants have become much scarcer, several riverine birds have shown declining population trends (e.g. common sandpiper and grey wagtail) and while some warmer climate dragonflies have colonised Britain, other common and specialist species have become generally scarcer (Environment Agency, 2017; Stroh et al., 2014; Hayhow, 2017; Cham *et al.*, 2014)

At present there are no regularly reported indicator species methods for assessing the status of freshwaters so this approach will probably not be applicable to monitoring of National Trust properties.

⁴Along with water pollution and the loss of healthy river bank vegetation, the pressures from mink predation means we lost more than 90% of our water voles by the end of the 1990s. Source: <u>https://ptes.org/campaigns/water-voles/</u>

Table 5. Commonly used community metrics for freshwater assemblages in the UK

Taxonomic group	Metric
Aquatic macroinvertebrates in rivers Method: River Invertebrate Classification Tool (RICT)	 Biological Monitoring Working Party score (BMWP) Number of Taxa (NTAXA) Average Score per Taxon (ASPT) It is also possible to generate SPEAR scores for assessing the likelihood of pesticide pollution, LIFE scores for assessing flow regimens and PSI scores for assessing the Proportion of Sediment-sensitive Invertebrates (PSI).
Aquatic macrophytes in lakes and rivers Method: LeafPacs2	 Lakes Lake Macrophyte Nutrient Index (LMNI) – a taxon-specific nutrient response score. Number of functional groups of macrophyte taxa (NFG) - a diversity metric with individual taxa are allocated to one of 18 "functional groups"* Number of macrophyte taxa (NTAXA) - a diversity metric, the number of scoring taxa recorded in the field survey Mean percent cover of hydrophytes (COV) – derived from lake macrophyte survey data Relative percent cover of filamentous algae (ALG) – derived from lake macrophyte survey data Rivers River macrophyte nutrient index (RMNI) – derived from the RMNI scores of the taxa recorded in the field survey. Taxon scores were derived for the earlier version of LEAFPACs as described in Willby et al (2012), and remain unchanged in this version. Number of macrophyte taxa (NTAXA) - a diversity metric, the number of scoring taxa recorded in the field survey, in this case only taxa which are considered truly aquatic, i.e. hydrophytes* are included Number of functional groups (NFG) – a diversity metric, individual taxa which are truly aquatic (i.e. hydrophytes) are allocated to 24 "functional groups"**, Cover of green filamentous algae (ALG) – this is the percentage cover of green filamentous algae over the whole of the survey desction of river.

Table 5. Commonly used community metrics for freshwater assemblages in the UK (continued).

Taxonomic group	Metric
Rivers, stream and lakes Method: Diatoms for Assessing River and Lake Ecological Quality (River DARLEQ2)	 Trophic Diatom Index (TDI).
Ponds and small lakes up to 5 ha Method: Predictive System for Multimetrics (PSYM)	 Index of Biotic Integrity (IBI), based on three plant and three macroinvertebrate metrics: F_COL: Number of water beetle families – a measure of edge habitat quality ASPT: a modified version of Average Score per Taxon reflecting sensitivity to all chemical pollutant, not oxygen levels F_OM: Number of dragonfly (Odonata) and alderfly (Megaloptera) families Number of submerged and emergent plant species (SM_NTX) Trophic ranking score for aquatic and emergent plants (TRS_ALL)
Rivers and streams	Number of uncommon plant species ((PL_NUS)
Fisheries Classification Scheme 2	No specific community metrics; fish communities usually described species-by-species
Ditches	No WFD compliant monitoring method available although field search techniques for invertebrates combined with plant surveys have been widely used (Palmer et al. 2013).
	Freshwater Habitats Trust has undertaken pilot studies for the development of a reference system based approach for ditch assessment.

Individual species surveys

Freshwater Habitats Trust has, as part of the Important Freshwater Areas project identified a set of species of freshwater species of conservation concern. Species are those which have a conservation status, with the list developed in consultation with national specialists. There are currently approximately 1000 species identified covering fish, amphibians and mammals, larger invertebrates, vascular plants, stoneworts and strictly aquatic bryophytes. The species of conservation concern list does not yet cover zooplankton groups, most algae or lichens. Those currently known from National Trust properties are listed in Table xx.

For virtually all of these species of conservation concern there are no current monitoring programme able to detect trends over reasonably short time periods. For most, of course, there is evidence of decline over the last 50 years, with these declines increasingly assessed using formal IUCN criteria.

In Phase 1 of the PondNet survey, monitoring methods for assessing the status of a small number of priority species, drawn from the much longer list of species of conservation concern have been developed and applied. These have been applied to:

- Adder's-tongue Spearwort
- Brown Galingale
- Coral Necklace
- Greater Water-parsnip
- Medicinal Leech
- Pillwort
- Starfruit survey
- Three-lobed Water-crowfoot
- Tubular Water-dropwort
- Yellow Centaury
- Fairy Shrimp
- Pond Mud Snail
- Tadpole Shrimp
- Common toad
- Great crested newt.

In each case, the objective of these surveys has been to make an assessment of the **abundance** of the species as this greatly increases the power of analyses. Indeed for rare species analyses undertaken as part of the development of PondNet indicated that, in many cases, when presence/absence only data were used it would be necessary to survey very large numbers of sites to detect change at a reasonable level (e.g. a 30% change in occupancy with 70% power), and in some cases more sites than the species now occurred at (Williams *et al.* 2012). For example, the number of ponds required to monitor Tubular Water-dropwort exceeded 3500 even at the lowest level of power (60%) detecting the biggest change (50%). Similarly, for Pillwort, which is currently known from about 200 1 km squares in England, power analysis suggests that surveys of all ponds in each of 7852 1 km grid squares would be needed to detect a 30% change at 70% power using presence / absence data alone. This is substantially more than the species actually occurs in.

Details of the PondNet survey methods are listed in Appendix 4.

4.6.5 Novel and emerging techniques (e.g. eDNA).

There is growing interest in new monitoring methods which may be appropriate for use with both volunteer and professional surveyors. These include the use of camera traps for nocturnal or reclusive species (especially mammals), surveying birds by recording sounds (e.g. Darras *et al.*, 2017) and near continuous recording of bat calls (see Norfolk Bat Survey: <u>http://www.batsurvey.org/</u>). Linking all of these techniques in the potential for use by non-specialists is that the survey method does not rely on a taxonomically expert observer to collect the raw survey data. This allows such non-specialists to potentially collect biologically credible data, one of the major limitations of citizen-based surveys.

Amongst the most promising of these to date is the use of environmental DNA (eDNA) which could contribute to a revolution in freshwater biodiversity monitoring. The eDNA approach has been successfully implemented to assess national great crested newt distribution and species distribution trends with the first three years now completed of a national monitoring programme (Freshwater Habitats Trust, unpublished data).

4.7 Collecting environmental data

In assessing the condition of freshwater habitats it is valuable for a number of different reasons to be collecting environmental data about waterbodies at the same time as biological data. Environmental data can help to:

- Explain why species are present (or absent) at a particular site
- Indicate the occurrence of pollution problems or physical environmental factors which may be causing site degradation or explain observed problems (e.g. algal blooms, presence of indicators of specific types of pollution)
- Allow the physical and chemical quality of waterbodies to be compared to other areas/landscapes
- Provide important informati0on that can guide site management.
- Provide an initial indication of problems which may require deeper investigation (e.g. quick test kits can reveal broadly whether pollution is occurring which requires more detailed investigation).

Standard environmental data, such as that collected in PondNet, provides a straightforward basis for describing the physical and chemical condition of ponds. Such recording can be undertaken by volunteers if training is given. Such data can also be used to provide information on priority habitat requirements for standing waters (ponds and lakes) needed by Natural England (Table 6). A standard set of environmental parameters for priority streams and rivers has also recently been proposed by Natural England.

Recommendation 4: We recommend that the standard PondNet survey of environmental variable for ponds is used, incorporating information requirements identified recently by Natural England for standing waters. We also recommend that a recording form for running waters that incorporates requirements of Natural England for assessing the condition of priority streams is developed for the present project.

The PondNet survey form also includes data needed for great crested newt Habitat Suitability Assessment. A link to the survey form is shown in Appendix 5.

Element	Attribute	e Existing Method data sources		New data required (if any)	Statistical approach
Landscape connectivity	Number of ponds	Countryside Survey	Counts in 1km ² survey squares are extrapolated to national scale. Losses and gains in pond numbers between surveys can be similarly extrapolated. Data can be stratified by pond size and land use. Urban areas not included.	Countryside Survey needs to be continued	Representative sampling
Naturalness of water quality regime	Nitrate and Countryside phosphate Survey, concentration PondNet		Sites are classified into 5 classes according to whether they exceed the NPS nutrient thresholds. There are no data on turbidity from current survey programmes.	Countryside Survey and/ or PondNet need to be continued. Turbidity scales should be aligned. The use of nutrient field test kits may allow more frequent sampling in a representative	Representative
	ANC		There are no ANC data from either network; currently limited to alkalinity and pH measurements.	subset of ponds in either network. ANC should be added to any future Countryside Survey pond water quality analysis particularly those in low alkalinity areas	sampling
Naturalness of hydrological regime	Presence of ditches and water control structures	None, Countryside survey and PondNet record some hydrological features but they are not adequate to assess naturalness.	Presence of artificial inflows, outflows and any water level control structures need to be recorded	Discussions are underway to introduce this to PondNet. It should also be included in any future Countryside Survey	Representative sampling

Table 6. Natural England priority habitat data requirements for standing waters

Element	Attribute	Existing data sources	Method	New data required	Statistical approach
Naturalness of the hydrosere	Natural pond base Natural shoreline Semi natural land use 5m from pond edge Semi natural land use at 100m from pond edge	Partially covered in Countryside Survey and PondNet PondNet, Countryside Survey	Individual ponds are classified into 5 classes according to how many of the 4 components are modified/managed.	Countryside survey and/ or PondNet need to be continued. Both surveys need to clearly report on shoreline modifications and naturalness of the pond base.	Representative sampling
Shading	Percentage of pond margin overhung by trees or percentage of perimeter shaded	PondNet, Countryside Survey	The percentage shading is used to classify ponds into 5 classes, with no inference to quality. The aim is to be able to report on the diversity of the extent of shading across the whole habitat resource.	Countryside Survey and/ or PondNet need to be continued	Representative sampling
Grazing	Grazing intensity score	PondNet, Countryside Survey	The intensity of grazing score is used to classify ponds into 5 classes, with no inference to quality. The aim is to be able to report on the diversity of the intensity of grazing across the whole habitat resource.	Countryside Survey and/ or PondNet need to be continued	Representative sampling
Characteristic assemblages	PSYM score	PondNet, Countryside survey	The PSYM score is used to classify individual ponds into 5 quality classes.	Countryside Survey and/ or PondNet need to be continued, ideally to include pond macroinvertebrate survey	Representative sampling
Non-native species	Number of non-native species	PondNet, Countryside survey	The number of invasive species (0,1,2,3,>3) is used to classify individual ponds into 5 classes.	Countryside Survey and/ or PondNet need to be continued. Currently mostly relevant to plants, but should include fauna	Representative sampling

Table 6. Natural England priority habitat data requirements for standing waters (continued)

4.8 National Trust Land Condition Assessment

As part of the monitoring process for land management each National Trust property is expected to undertake a land condition assessment (LCA) at each point of major change. This means that LCA will be applied periodically across the National Trust estate but not in a regular or systematic manner.

The current LCA methodology includes descriptions for different levels of water health (see Appendix 2).

4.9 Application of standard biological metrics on National Trust land

All of the traditional biological metrics now widely used in Britain for assessment of freshwater ecological quality are potentially suitable for assessing freshwater habitat quality on the National Trust estate. However, all of these methods also require professional surveyors to implement them effectively and will need to be prioritised in terms of cost-effectiveness. Costs per sample are summarised in Table 9.

Broadly speaking costs of standard biological metric generating methods increase in the following order:

Least expensive - Diatoms<Wetland Plants<Macroinvertebrates<Fish - Most expensive

In practice, of these methods only the wetland plants and macroinvertebrates have been widely applied to different waterbody types using a standard method. At present although diatom and fish survey methods have been applied to the full range of smaller waters of concern in this report, they have not yet been widely tested. For example, pilot project using diatoms to assess ponds have been undertaken but no systematic surveys have yet been reported in Britain. Likewise, although fish biologists do undertake surveys on ponds, there are no standard methods yet available (e.g. Perrow and Thomlinson 2000; Stefanoudis et al. 2017).

Recommendation 5. For widespread monitoring on National Trust properties, metrics based on wetland plants are the only traditional biological survey method which can be easily applied at large numbers of sites at relatively low cost.

5. Power analysis of the sampling requirements for different monitoring approaches

5.1 Design of the survey

To provide national statistics on the status of freshwater habitats and species on National Trust properties it will be desirable to stratify the choice of sites in terms of:

- National Trust region or country (i.e. England versus Wales).
- Waterbody type (ponds and streams/ditches)
- Upland versus lowland environments, where there may be substantial differences in the effect of land use, geology and climate on waterbody quality.

It may also be desirable to report separately on these different strata (e.g. providing separate results for England and Wales). However, this increases sample sizes, effectively requiring a doubling of the number of sites to be visited, and may be beyond the scope of the project. The implications for reporting in two countries or in two different broad landscape types are discussed below.

Overall, surveys which revisit the same 1 km square / waterbodies (i.e. paired analyses) have greater power to detect change i.e. a smaller number of sites are needed to detect a given level of change. If completely random selections of sites are made during each survey cycle, sample numbers increase substantially.

In this report we have evaluated the power of two broad types of test:

1. Metrics based on multiple species or measures e.g. PSYM score, BMWP score, great crested newt Habitat Suitability Index which are less inherently variable and require smaller sample sizes.

2. Tests of the presence of single species or single chemicals which generally are much more variable and require higher numbers of samples to assess significance of change. Surveys with large numbers of zero values also generate large sample sizes to detect change. For species which are not widespread this requires measurements of abundance, the approach adopted in the PondNet project, in order to generate practical sample sizes.

5.1.1 What type of change are we analysing?

There are two types of change which monitoring of the National Trust estate can evaluate:

- Change on the National Trust estate over time
- The status of the National Trust estate compared to the rest of the water environment.

Change on the National Trust estate over time

Evaluating change on the National Trust estate over time requires repeat surveys at time t₁ and time t₂. There are some advantages to undertaking complete surveys at two discrete times, following the Countryside Survey model with, for example, all sites surveyed in one calendar year and a second survey 5-7 years later, also undertaken in a single calendar year. Although this gives a clear temporal snapshot it can be difficult to organise such surveys, not least because of the substantial resource requirements of completing a national survey in one year. In the present context, funds are not available for two such time-limited surveys.

An alternative to this approach, which needs fewer samples annually, is a trend analysis with a smaller number of sites surveyed every year, repeated over a number of years to detect trends. A disadvantage of this approach is trends may only become apparent after some

years, and it can be difficult to determine survey power as comparable data will not usually be available to base the survey design on.

In the in the following sections we have provided examples of both options although a trend analysis is the more practically feasible as insufficient resources are available to undertake two national surveys at 5-7 year intervals.

The status of the National Trust estate compared to the rest of the water environment

In order to assess the quality of habitats or the status of species it is recommended that the National Trust waterbodies and species are compared with relevant national recording and monitoring surveys. Table 7 summarises the monitoring programmes or metrics with which National Trust sites should be compared.

Comparison with other national monitoring programme trends also provides an element of 'control' indicating the direction and extent of changes in the wider countryside. For streams standard monitoring data collected by Environment Agency and Natural Resources Wales provides an indication of the extent to which National Trust properties are achieving or exceeding standards in the rest of the countryside.

For ponds, trends on National Trust land should be compared either with on-going monitoring undertaken in Freshwater Habitats Trust as part of the PondNet project or CEH projects continuing the Countryside Survey approach.

For most species of conservation concern trends on National Trust properties will have to be compared with PondNet data. As funding for PondNet is not guaranteed, the precise form of comparisons is yet to be determined.

Table 7. National monitoring programme data with which monitoring on National Trust estates will be compared

Waterbody type or species type	Data with which results will be compared
Streams/ditches	Trends will be compared with Environment Agency and Natural Resources Wales national monitoring programmes primarily in terms of species richness and trophic ranking metrics. Where possible, sites will also be classified in WFD terms.
Ponds	Sites will be classified in terms of PSYM plant metrics, the same approach as is used in the Countryside Survey.
Species	
Amphibians	If national trend monitoring of amphibians, compare with PondNet / NARRS trends.
Birds	Waterways Birds Survey data.
Other species of conservation concern	For most other species it is not yet clear whether national species specific trend monitoring programmes will be continued on sufficient scale to report annual trends.

5.2 Questions addressed by the survey

In this section the questions about the Tier 2 waterbodies which the survey is intended to answer are briefly reviewed. A summary is given in Table 9. In each section we also suggest a target or objective of environmental management that is the main reason for the monitoring work.

Overall, data provided by the survey will allow the following questions about the quality of freshwaters on the National Estate properties to be evaluated:

- Are pond numbers increasing or decreasing on the National Trust estate and are pond numbers greater than countryside average? Numbers of small lakes are unlikely to change substantially and an inventory of these waterbodies can probably be maintained using Ordnance Survey maps. Small running waters are unlikely to change substantially so we do not recommend regular monitoring of numbers or length.
- Is nutrient pollution on the National Trust estate increasing or decreasing? How does water quality in small waters on the National Trust estate compare to the rest of the landscape?
- Is wetland plant richness increasing or decreasing, and how are other biological metrics changing which can be assessed using plants (e.g. evidence of nutrient enrichment) changing?
- How are populations of single species of conservation concern changing e.g. pillwort, great crested newt. Species for which evidence is available to represent the National Trust estate as a whole will largely depend on the extent to which the volunteer PondNet monitoring programmes can be maintained and developed.

Changes in communities of algae, aquatic invertebrates and fish could potentially be assessed in Tier 2 waters but will require significantly greater funding than is currently available.

5.2.1 Pond numbers, and numbers of other waterbodies

Question 1: Are pond numbers increasing or decreasing on the National Trust estate?

The number of ponds, particularly those which have clean water, is an important metric of freshwater landscape quality. As ponds are easily created and destroyed, numbers are quite dynamic. Following many years of losses as agriculture intensified, numbers are now increasing at national level.

Assessing pond numbers on the National Trust estate is best addressed simply by censusing ponds i.e. counting all the ponds on an estate, rather than basing estimates on samples. As ponds are quite easy to count, volunteers, rangers or estate managers can be trained to collect and update this. Note that training *is* required to recognise ponds consistently particularly to correctly record smaller seasonal waters, to distinguish ponds from other wetland habitats and to ensure that late succession ponds are not recorded as 'lost'. Published Ordnance Survey maps, and satellite maps on the Internet can be used as a starting point for estimating pond numbers but are (a) often out of date and (b) poor for distinguishing ponds in woods, and seasonal ponds.

The practical target which is being monitored is to at least double pond numbers.

Question 2. Are pond numbers greater than countryside average?

Comparing pond density to other published information is a straightforward way of assessing whether the National Trust estate has more ponds than similar landscape types in the wider countryside. The countryside averages for pond density in England, Wales and Scotland are shown in Table 8. Analysis of existing Countryside Survey data indicates that over the period 1998 to 2007 the power of the analysis to detect change in pond number at Great Britain level was 72.5% and detected an increase in pond density of from 1.86 to 2.10 ponds per km², a 17% change.

Table 8. Pond densities in England and Wales in 2007, the most recent national estimate made as part of the Countryside Survey (Williams *et al.* 2010)

Country Density (ponds / km ²)		Total number (range)
England	1.83 (range: 1.53-2.14)	234,000 (195,000-272,000)
Wales	2.24 (range 1.23-3.70)	47,000 (26,000-78,000)

Numbers of other small waterbodies

Numbers of small lakes are easily described from maps. The size cutoff between ponds and lakes (2 ha) means that virtually all lakes will be shown on OS maps. Where new waterbodies (e.g. gravel pit lakes) have been created on properties it should be easy to keep an inventory of these waters.

It is probably not necessary to assess the length or area of linear waterbodies as they change only slowly in extent.

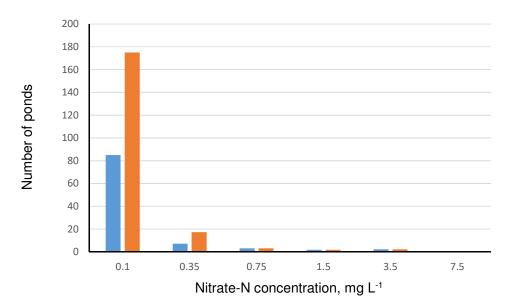
5.2.2 Waterbody pollution

Pollution in the majority of small waterbodies is not monitored although data from the Countryside Survey and, more recently, from the Water Friendly Farming Project, have provided laboratory quality analysis of nutrient levels in headwater streams, ditches and ponds at national and landscape levels. In the last 5 years, rapid nutrient test kits produced by Japanese company Kyoritsu have been used in projects run by Earthwatch and the Freshwater Habitats Trust to introduce large scale nutrient testing by volunteers.

We have evaluated sample sizes needed to detect change in water quality using volunteer collected data from the national Clean Water for Wildlife survey, and the professional Countryside Survey and Water Friendly Farming project. In both cases these approaches have focussed on nutrient pollution as indicators of the extent of pollution.

Volunteer data sets can address two question on National Trust properties:

Question 1. Is diffuse nutrient pollution increasing or decreasing on the National Trust estate?


To detect trends in water quality with the Kyortisu Packtest kits will require that waterbodies show quite substantial changes in nutrient concentrations, probably in the range of 30-50% of the mean across whole landscapes. For example, across the South Midlands great crested newt District License pilot project area, pond nitrate concentration as measured with a single PackTest sample were generally low with 84% of c500 ponds surveyed falling into the lowest category of <0.2 mg L⁻¹ nitrate-N. The overall mean nitrate-N concentration was 0.28 mg L⁻¹ nitrate-N, suggesting that to detect a change in nitrate concentrations at landscape level in this area would require that average pond nitrate concentrations would need to fall to 0.20-0.21 mg L⁻¹ nitrate-N to be detected as a significant change (see Section 5 below, power analysis).

Modelling a simple practical scenario (Figure 8) suggests that a landscape-wide pond creation scheme could create such a change, indicating that this could be detected with the PackTest kits. Assuming a landscape with 100 ponds, with nitrate concentrations in the same proportions as the South Midlands area, if pond numbers were doubled in that area, and most of the new ponds were in the two 'clean water' categories (<0.2 mg L⁻¹ and 0.2-0.5 mg L⁻¹), the mean nitrate N concentration would fall from 0.29 to 0.21 mg L⁻¹, close to the levels at which power analysis indicates that a significant difference could be detected with reasonable power. Such a change – doubling pond numbers across a landscape area, is a quite plausible scenario at local scale. For example, in the Water Friendly Farming project pond creation has approximately doubled pond numbers in the 10 km² experimental catchment where habitat creation work is being undertaken.

On the National Trust estate this implies that a quite substantial programme of pond creation would be needed to drive a detectable change in waterbody chemistry using the PackTest kits. However, the level needed is in line with the doubling of pond numbers recommended in the Million Ponds Project.

Measuring water quality trends with laboratory analysed samples does not improve the ability to detect change **when using single annual snapshot samples** (Table 10).

Detecting change in smaller numbers of waterbodies may be possible if more frequent sampling is undertaken seasonally, reducing the variability of the individual measurements. As the use of the PackTest kits is developed it would be worth evaluating their potential to detect change at smaller numbers of sites by increasing the number of samples.

Figure 8. A simple modelled example of the ability of PackTest nutrient kits to detect landscape wide change in nitrate levels.

Assuming that 100 ponds (blue bars) fell into the seven PackTest categories in the proportion observed in the South Midlands Great Created Newt District Licensing pilot area, adding 100 new ponds to this landscape (orange bars), all of which fell into the two 'clean water' categories, would lead to a landscape-wide reduction in mean nitrate-N concentration from 0.29 mg L⁻¹ to 0.21 mg L⁻¹. Power analysis suggests that PackTest analyses would have sufficient power in a sample of c500 waterbodies to identify such a trend as statistically significant.

Question 2. How does water quality in small waters on the National Trust estate compare to the rest of the landscape?

Landscape wide comparisons with other areas of the country can be made at a variety of spatial scales with the Kyoritsu kits. For example, comparison with the New Forest dataset (Figure 4) allows National Trust properties sampled with the Kyoritsu kits to be compared with a landscape with a very high proportion of exceptionally clean waterbodies. For intensively managed landscapes the proportions of water bodies in different chemical classes can be compared to case studies from the River Ock (Figure 5) or Greater London (Figure 6). It would also be possible to compare National Trust properties with the nutrient sampling of the stratified random sample of ponds visited nationally for PondNet.

The practical change that water quality monitoring is assessing

The main practical objective that water quality monitoring with volunteer collected PackTest data is being used to assess is the creation or restoration of clean water (in the strict sense of WFD High status or equivalent). This will normally mean clean water pond creation and in some cases pond management, although changes in water quality from pond management (e.g. desilting) are generally likely to be shorter-lived unless catchment issues have been addressed.

In theory, PackTest kits could be used to assess changes in the degree of nutrient pollution in running waters. However, in practice, the number of locations where large enough improvements occur to be detected by the kits seems likely to be limited. Locations where PackTest kits might detect change include locations where substantial nutrient point sources are removed from streams or ditches and where there are major landuse changes,

influencing whole waterbody catchments, such as ditches or streams rising in fields converted from arable to non-intensive grass (e.g. a maize field to grass reversion).

Where changes in diffuse nutrient pollution levels are more subtle, effective detection is still likely to require laboratory based monitoring programmes which are only likely to be undertaken in Tier 4 type projects.

Although the PackTest kits are only likely to detect substantial changes in water quality, biological data, especially wetland plants, may be more revealing. Aquatic plants are very sensitive to nutrient loadings and, assuming that sensitive species are present in the area to colonise monitored waterbodies, can give a good indication of the extent of nutrient pollution. In this way, biological monitoring can complement chemical monitoring and give initial indications of likely causes of environmental problems.

5.2.3 Biological quality of water bodies in the National Trust estate

Practically it is most effective to consider the biological quality of National Trust waterbodies using two types of data: surveys of wetland plants, which should be undertaken professionally, and surveys of individual species of conservation concern which can potentially be undertaken by volunteers in a co-ordinated network based around the PondNet project. The National Trust survey would also provide the opportunity to extend volunteer monitoring of species of conservation concern to smaller running waters and ditches.

The questions which can be addressed with this information are:

Question 1. Is plant richness or community quality increasing?

Using plant community data it is possible to assess trends in species richness and derive metrics which are compatible with Water Framework Directive where appropriate. For ponds comparisons can be made with National Pond Survey species richness and conservation value data and PSYM assessments. The power of analyses is good (see Table 10). With aquatic and wetland plant community data it is also possible to derive Trophic Ranking Scores to assess nutrient status.

For individual species there is a good likelihood that individual amphibian species could be assessed, particularly the occurrence of great crested newts or the occurrence of individual endangered plants, such as Pillwort, Brown Galingale or Tubular Water-dropwort.

Assessment of animal groups. If it is possible to introduce eDNA sampling to the volunteer programme it would then become possible to address questions of the change in the status of fish populations, although this requires separate funding. The power of other more costly measures has also been evaluated and is discussed further below. We have also evaluated the power of Riverfly monitoring which indicates that if large changes are seen the method theoretically has good power to detect change. However, although the change detectable, 10% difference in the mean Riverfly score, such a change requires quite substantial impacts on, or improvements in, the fauna. Although it is easy to imagine such changes on the occasional National Trust property, perhaps following a severe local organic pollution event, for such impacts and changes to occur on a large scale on the National Trust estate seems unlikely.

Question 2. How do National Trust waterbodies compare with the wider environment? As noted above plant data allows the biological quality of National Trust properties to be compared with results from a range of other national projects including the National Pond Survey, Countryside Survey and Water Framework Directive monitoring.

Question	Waterbody type	Objective	Metric	How measured	Statistical design	Comparison with rest of landscape					
Physical and cl	Physical and chemical parameters										
Is number of ponds increasing?	Ponds	At least double pond numbers, mainly by creating new clean water ponds	Number of ponds on each estate	Count number of ponds on estate at t ₁ and t ₂	Census approach (i.e. count all the ponds); a sampling approach is not needed	Compare with estimates from PondNet					
Is diffuse nutrient pollution increasing or decreasing?	Ponds Streams Rivers when not monitored by EA Lakes, when not monitored by EA Ditches	Reduce nutrient levels, with 'clean water' (i.e. High status) the main objective	Nitrate concentration in National Trust waterbodies assessed using rapid test kits Phosphate concentration in National Trust waterbodies assessed using rapid test kits	Record pollutant in stratified random sample of habitats at t ₁ and t ₂	Compare means from paired samples at t ₁ and t ₂	For waterbodies monitored with rapid test kits, compare to other WaterNet data WFD monitored waterbodies: compare with EA published data					

Table 9. Questions to be answered by the proposed National Trust monitoring programme

Question	Waterbody type	Objective	Metric	How measured	Statistical design	Comparison with rest of landscape
Community mea	sures					
Plants Is plant richness or community quality increasing?	Ponds Streams Ditches	Plant community quality achieves High status or equivalent	PSYM metrics LEAFPACS metrics Note both measures can include Trophic Ranking Score	Record plants in stratified random sample of habitats at t ₁ and t ₂	Compare means from paired samples at t ₁ and t ₂	Compare to National Ponds Survey for ponds. Compare streams and rivers to WFD derived datasets Compare ditches to reference quality sites.
Algae Is Trophic Diatom Index changing?	Streams	Diatom community quality achieves High status	DARLEQ2 metrics	Sample algae in stratified random sample of habitats at t_1 and t_2	Compare means from paired samples at t ₁ and t ₂	Compare to WFD diatom results nationally
Invertebrates Is invertebrate assemblage diversity or quality increasing?	Ponds Streams Ditches	Invertebrate assemblage achieves high status or equivalent	PSYM scores RICT scores PSYM-type metrics	Survey invertebrates in stratified random sample of habitats at t_1 and t_2	Compare means from paired samples at t ₁ and t ₂	Compare to National Ponds Survey for ponds. Compare streams and rivers to WFD derived datasets Compare ditches to reference quality sites.

 Table 9. Questions to be answered by the proposed National Trust monitoring programme (continued)

Question	Waterbody type	Objective	Metric	How measured	Statistical design	Comparison with rest of landscape
Fish						
Is fish species richness increasing?	Streams Ponds	Increase abundance / richness of appropriate species for waterbody	Richness or biomass	Standard electrofishing methods May be surveyed using eDNA	Compare means from paired samples at t ₁ and t ₂	Richness and biomass data can be compared with standard EA data, although these can be hard to access
Single species	(two examples	of contrasting I	ocalised and wide	spread species a	are given)	
Pillwort	Ponds	Increase in abundance	Extent of plant stands	Abundance survey	Compare means from	
	Lakes				paired samples at t_1 and t_2	
Great crested newt	Ponds	Increased pond occupancy	Number of occupied ponds on property	eDNA sampling or traditional survey methods	Compare means from paired samples at t_1 and t_2	If data are available compare to national PondNet survey or NARRS ⁵ .

Table 9. Questions to be answered by the proposed National Trust monitoring programme (continued)

⁵NARRS = National Amphibian and Reptile Recording Scheme.

5.3 Selecting methods: power analysis and cost

Power analysis was undertaken on a range of datasets to evaluate the potential of different survey approaches to assessing freshwater species abundance and habitat ecological quality on the National Trust estate. These were:

- Pond numbers
- Nitrate and phosphate concentrations, using PackTest kits or laboratory analysed data
- Wetland plants at species level
- Diatoms
- Macroinvertebrates at family level and species level
- Rapid invertebrate assessment using Riverfly taxonomic level
- Fish species richness and abundance
- Amphibian species richness
- Examples of individual species of conservation concern

Power analysis was used to determine the sample size needed to detect changes in abundance and pond occupancy. Type II errors (β) may occur if there is a failure to reject the null hypothesis, when in fact the alternative hypothesis is true. Power (1- β) is the probability of detecting an effect if one exists in the population, and is largely dependent on sample size N, effect size and levels of variance in sample groups σ 2.

Power analysis was undertaken using G*Power, a free software package. Results of the analyses are discussed in the following sections below and summarised in Table 10.

Sample sizes for a range of power values (typically 60-95%) and levels of change (typically 10%-80% change in means) were calculated (see Appendix 1). In each case, sample sizes for p values of 0.05 and 0.1 were evaluated. For simplicity, sample sizes in Table 10 are based on the widely accepted standard of 70% power to detect a 30% change, unless otherwise noted.

Approximate costs of each sampling method are also reviewed and summarised in Table 10. Costs are derived from various recent or current projects undertaken by Freshwater Habitats Trust.

5.3.1 Pond numbers

PondNet and Countryside Survey record pond numbers by counting ponds in a sample of 1 km squares. However, this method is hard to apply to National Trust properties which vary considerably in size and are often irregular in shape, not filling whole 1 km squares.

For this reason it is proposed that pond numbers are simply counted on properties i.e. censused. Numbers are therefore absolute values and do not require power analysis to estimate samples sizes to detect trends.

Recommendation 6: Ponds should be counted by censusing waterbodies on each National Trust property rather than by taking a sampling approach, such as that used in PondNet or the Countryside Survey.

5.3.2 Water quality

For both PackTest kits and laboratory analysed nutrient samples, return visits to the same sites (i.e. paired analysis) have greater power than random samples in which each survey is based on a new random set of sites.

For both ponds and streams, low hundreds of sample sites (range 109-405) are needed to detect changes in nitrate and phosphate levels at 70% power to detect a 30% change.

Numbers of sample sites for laboratory analysed samples are generally significantly greater than for PackTest kits, with more than 1000 paired sites needed, except for Total P measured in ponds.

Recommendation 7: We recommend that PackTest kits are used to evaluate changes in water quality on the National Trust estate, noting the limitations given in Section 5.2.2 about the type of monitoring questions which can be answered with the test kits.

5.3.3 Wetland plants

Power analysis of sample sizes needed to assess change in wetland plant assemblages has been based on two approaches:

- Multi-species assessments such as PSYM score, species richness, conservation value or LEAFPACS metrics.
- Single species monitoring which may be more suitable for volunteer groups where the relevant species are present. In the case of uncommon species, monitoring should focus on assessing species abundance because this reduces the number of zero values typical of presence/absence datasets which lead to the need for very large sample sizes.

Stream and pond power analyses were based on Countryside Survey data collected in 2007. We have assumed that the power analysis results for streams can be used to indicate the ditch power analysis. Note that small lakes up to 5 ha in area can be incorporated in PSYM analysis which includes small waterbodies up to this size. A separate analysis was not undertaken for larger lakes as we recommend that such lakes are evaluated on a case-by case basis using standard WFD methods.

For both streams and ponds less than 100 sample sites are needed to give 70% power to detect a 30% change in mean numbers of species (Table 10). Around 150 sites are needed to detect a 20% change. These changes are equivalent to 1 or 2 species gained or lost on average.

Recommendation 8: Wetland plants provide an effective group for assessing change in small running and standing waters and should be adopted as a monitoring metric provided they can be recorded professionally.

5.3.4 Diatoms

Sample sizes for diatom surveys are based on detecting change in the TDI metric. Standard monitoring methods for diatoms are only currently available for streams so it has not been possible to calculate a sample size for ponds.

Power to detect change using the TDI index is very good, but it should be noted that quite substantial changes in nutrient levels are likely to be needed to see significant changes in the TDI value. Thus in the PARIS project a rough halving of SRP was needed to reduce TDI by 10% (Figure 9) (Harper et al. 2009).

Total sample size needed for diatoms is less than 100 to detect a 10% change with 70% power. Given that diatom analysis is relatively inexpensive it is worth considering this metric as an adjunct to large wetland plants.

Recommendation 9: If additional funds are available, or there are other opportunities for establishing diatom monitoring programme, monitoring with this metric is potentially is good option.

Figure 9. Relationship between Trophic Diatom Index (TDI) and percentage pollution tolerant valves (%PTV) against soluble reactive P (SRP).

SRP is mean concentration in water samples collected 2 weeks prior to biological sample, spring and autumn 2005. (TDI r^2 =+0.61, p <0.005, %PTV r^2 =+0.59, p <0.005). TDI = blue diamonds; %PTV = red triangles. From Harper *et al.* 2009.

5.3.5 Rapid invertebrate assessment using Riverfly taxonomic level

Power analysis of Riverfly data was undertaken using data available for 1 January to 31 December 2016 on the Riverfly website at <u>http://www.riverflies.org/open-data</u>.

The analysis indicates that around 150 sites would be needed to detect a 30% change in the Record Score. However, it is worth noting that to achieve a 30% change in the Record Score requires a substantial change in the invertebrate fauna – probably the complete loss of more than one order of invertebrates. Figure 10 shows an example of a Record Score for a site which indicates that a 30% change in score would probably need the complete loss and or substantial reduction of two Families or Orders of caddis, mayflies, stoneflies or Gammaridae. Such a change in response to reducing river pollution levels indicates that only substantial changes in quality could be detected using this method.

		Examp	ole month	Mo	onth 1	Mo	onth 2	Mo	onth 3
	Date	27/0	06/2015						
	Recorded by	B Fitch &	A Menzies						
		Est. number*	Score	Est. number*	Score	Est. number*	Score	Est. number*	Score
Caddisflies	Cased caddisfly	20	2						
Caddisfiles	Caseless caddisfly	2	1						
	Mayfly (Ephemeridae)	10	2						
Up-wing	Blue-winged olive (Ephemerellidae)	20	2						
flies	Flat-bodied stone clinger (Heptageniidae)	100	3						
	Olives (Baetidae)	4	1						
Stoneflies	Stoneflies (Plecoptera)	3	1						
Freshwater shrimp	Freshwater shrimp (Gammaridae)	8	1						
	ARMI score		13						
	Additional observations/notes	Fly hatches observed. River level: LHB 200mm, Middle 350mm, RHB 150mm.							

Figure 10. An example of a Riverfly Record Score.

Eight Orders and Families of invertebrates are recorded and their abundance on a log scale used to calculate a score: 1-9 individuals score 1, 10-99 = 3, 100-999 = 3, 1000 and above = 4. For further information see the Riverfly website.

Recommendation 10: We recommend that the Riverfly score would be worth further investigation provided that there was further analysis of its inherent variability. Additionally, it would be worth assessing first whether there were likely to be substantial impacts on running waters on the National Trust estate which could be amenable to improvement before implementing a programme of volunteer surveys which might lack the power to detect anything other than very substantial changes in the invertebrate fauna.

5.3.6 Macroinvertebrates at family level and species level

Species level analysis

Numbers of samples needed to detect change in species-level freshwater macroinvertebrate metrics is surprisingly modest, with less than 30 samples needed to detect a 30% change with 70% power. However, changes of 30% in invertebrate species metrics are likely to require substantial improvements to waterbodies. It probably more realistic to consider the sample sizes needed to detect a 10-20% change in species richness which would require around 100 sampling locations in both streams and ponds.

In practice the costs of such work make it unlikely that this work could be undertaken in the near future except as part of a larger national programme to assess waterbody quality in a professional survey.

5.3.7 Fish species richness and abundance

Data from surveys of headwater streams in the Water Friendly Farming project area were used to evaluate sample sizes needed to detect a 30% change in fish species richness with 70% power. Data were available only for streams.

A paired analysis required less than 50 samples to detect a 30% change, with the number rising to 100 or more sites for 10-20% change (Appendix Table A15).

Fish surveys are expensive and it is possible that new eDNA techniques could replace traditional fish surveys, at least to detect species presence/absence. Freshwater Habitats Trust is currently preparing to test these fish eDNA methods but at present there are no data available on which to base power analysis.

Recommendation 11: We do not recommend undertaking fish surveys routinely on Tier 2 waterbodies on the National Trust estate unless eDNA techniques become available. Fish survey work may be needed in Tier 4 projects.

5.3.8 Amphibian species richness

At present in Britain no multi-species amphibian metrics are routinely calculated, with monitoring essentially revolving around individual surveys of the 5 widespread native species (Common Frog, Common Toad and the three species of newts). Sample sizes for these species individually are discussed further below. More intensive monitoring of the small number of sites with Natterjack Toad is also undertaken.

With the advent of eDNA metabarcoding it may soon be possible to quickly generate a multispecies metric for amphibians routinely. Freshwater Habitats Trust is planning to test such a metric in the near future. However, at present, no data are available to run a power analysis for a multi-species amphibian metric.

For great crested newt it is possible to assess:

- Pond occupancy using eDNA combined with traditional methods
- Abundance, as we believe volunteer groups could also estimate population numbers by counts if trained and co-ordinated under the auspices of the PondNet/NARRS national monitoring programme.

It is also quite straightforward for volunteers to record common toad using traditional methods of searching for spawning adults, spawn strings and larvae which are comparatively easily distinguished from frog tadpoles. Data from common toad monitoring could be compared with NARRS survey data.

5.3.9 Individual species of conservation concern

For ponds, single species monitoring methods have now been developed for a number of species of conservation concern.

Sampling strategies were developed for national level monitoring for several of these in the course of the PondNet project (Ewald *et al.*, 2013) and the results of this work are summarised for key species. Power analysis undertaken for PondNet can be applied to the National Trust estate and can be used to address two questions:

- 1. Is the species increasing or decreasing on the National Trust property
- 2. Is the trend different to that seen in the rest of the landscape.

Examples of two localised species, as well as great crested newt and common toad, are discussed further below.

Pillwort

For pillwort, the methodology which produced the highest level of power for any given sample size was estimating the percentage cover of Pillwort within its available niche. To achieve 70% power, with 30% change between years, 75 ponds would need to be surveyed. If the same ponds were revisited (matched pairs) the number of samples required was only 39 ponds.

Tubular Water-dropwort

Differences between methods to achieve the same level of power for Tubular Waterdropwort were less marked than for Pillwort. Abundance, measured as the percentage in cover of the whole pond, the percentage cover of the available niche and measures of density within the 75 cm² quadrat resulted in similar numbers of ponds to achieve the same level of power. To detect 30% change, this was around 100 ponds (matched pairs) and 200 ponds (independent samples).

5.4 Other recording options

There should be general encouragement of biological recording on the National Trust estate.

A short guide with links to all appropriate recording schemes could be prepared to provide a simple signposting service for those interested in biological recording.

This would help to encourage co-operation, data sharing and development of volunteers moving between groups and building their interests and skills. It could also be used to signpost the work of organisations offering training in identification of freshwater species such as Freshwater Biological Association and Field Studies Council. We suggest that this could be developed as a small part of further work on PondNet and its extension to habitats other than ponds.

Table 10. Summary of power analyses. Unless otherwise stated values are 70% power to detect a 30% at p value of = 0.05

Metric	Ро	nds	Stre	eams	Volunteer/ Professional	Cost per sample
	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂	Trococonta	Sample
Pond numbers	Census – c ponds	count all	n/a	n/a	Volunteer	Volunteer support time
Nitrate PackTest kits (Clean Water for Wildlife data)	368	1926	109	429	Volunteer	£1.50
Phosphate PackTest kits (Clean Water for Wildlife data)	309	1615	405	1612	Volunteer	£1.50
Total N – lab snapshot (CS2007 data)	1703	8930	1471	5879	Vol collect; Professional analysis	£7.50
Total P – lab snapshot (CS2007 data)	300	1566	1635	6535	Vol collect; Professional analysis	£7.50
Wetland plants -70% power, 30% change (CS2007 data)	74	220	56	220*	Professional	£120 (FHT)
Wetland plants - 70% power, 20% change (CS2007 data)	164	494	125	494*	Professional	£120 (FHT)
Diatoms - 70% power, 30% change (EA 2016 monitoring data)	No current method	No current method	9	42	Possibly volunteer: sampling Professional sample identification	£60 to identify samples for TDI score (Bowburn Consultancy)
Diatoms - 70% power, 10% change (EA 2016 monitoring data)	No current method	No current method	71	365	Possibly volunteer: sampling Professional sample identification	£60 to identify samples for TDI score (Bowburn Consultancy)
Rapid invert taxon richness 80% power; 10% change (Riverfly data)	(note FH taxon Big F	nt method IT has 12 Pond Dip but redesign)	129	510	Volunteer	Volunteer support time

Table 10. Summary of power analyses. Unless otherwise stated values are 70% power to detect a 30% at p value of = 0.05 (continued)

Metric	Ро	nds	Str	eams	Volunteer/ Professional	Cost per sample
	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂		
Invertebrate species richness - 70% power, 30% change (NPS data ponds; CS 2007 data for streams)	15	55	24	48	Professional	Stream: tbc Pond: tbc
Invertebrate species richness - 70% power, 10% change (NPS data ponds; CS 2007 data for streams)	120	474	102	416	Professional	Stream: tbc Pond: tbc
Fish species richness (Water Friendly Farming data – professional electric fishing)	No data currently available for analysis		45	n/a	Professional	£600/site (Econ – Martin Perrow)
Fish species richness – eDNA Test kits from Spygen	No data cu available fo		No data currently vsis available for analysis		Volunteer collect; Professional analysis	£250 (for 10+ sites) for analysis
Amphibian species richness – eDNA from Spygen	No data cu available fo			i currently for analysis	No data currently available for analysis	£250 (for 10+ sites)

*Note that sample sizes for stream and pond wetland plants with two independent samples are coincidentally the same.

Table 10. Summary of power analyses. Unless otherwise stated values are 70%power to detect a 30% at p value of = 0.05 (continued)

Metric	Ро	nds	Stre	eams	Volunteer/ Professional	Cost per sample
	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂	Paired samples at t ₁ and t ₂	2 random samples at t ₁ and t ₂		
Protected species						
Great crested newts	Assess cou c50% the N volunteers. Alternativel undertaken surveys (50 would cost 7000)	JT sites with y, ⊨eDNA) sites	Not ap	plicable	Volunteers or professional	Volunteer support time
Pillwort	39	75	Not ap	plicable	Volunteers or professional	Volunteer support time
Tubular Water- dropwort	100	200	Not ap	plicable		Volunteer support time
Other species A mix of traditional and eDNA methods	PondNet m	ethods		ds under opment	Volunteers Volunteer Co- ordination cost	Volunteer support time

	ble mber	Description	Region	Data used	Design	Page no.
	1.1	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in ponds	England + Wales	Clean Water for Wildlife survey 2016	Independent	
Α	1.2	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in ponds	England + Wales	Clean Water for Wildlife survey 2016	Matched pairs	
Α	1.3	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in ponds	England + Wales	Countryside Survey 2007	Independent	
Α	1.4	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in ponds	England + Wales	Countryside Survey 2007	Matched pairs	
Α	1.5	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in ponds	England + Wales	Clean Water for Wildlife survey 2016	Independent	
Α	1.6	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in ponds	England + Wales	Clean Water for Wildlife survey 2016	Matched pairs	
Α	1.7	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in ponds	England + Wales	Countryside Survey 2007	Independent	
Α	1.8	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in ponds	England + Wales	Countryside Survey 2007	Matched pairs	
Α	1.9	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in streams	England + Wales	Clean Water for Wildlife Survey 2016	Independent	
Α	1.10	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in streams	England + Wales	Clean Water for Wildlife Survey 2016	Matched pairs	

Tab nu	ole mber	Description	Region	Data used	Design	Page no.
Α	1.11.	Streams: power analysis of sample size required at time1 and time2 to detect a change in nitrate concentrations in streams	England + Wales	Countryside Survey 2007	Independent	
Α	1.12.	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in nitrate concentrations in streams	England + Wales	Countryside Survey 2007	Matched pairs	
Α	1.13.	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in streams	England + Wales	Clean Water for Wildlife Survey 2016	Independent	
	1.14.	Streams: power analysis of sample size required at time1 and time2 to detect a change in phosphate concentrations in streams	England + Wales	Clean Water for Wildlife Survey 2016	Matched pairs	
Α	1.15.	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in streams	England + Wales	Countryside Survey 2007	Independent	
Α	1.16.	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in phosphate concentrations in streams	England + Wales	Countryside Survey 2007	Matched pairs	
Α	2	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in wetland plant species richness	England + Wales	Countryside Survey 2007	Matched pairs	
Α	3	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in wetland plant species richness	England + Wales	Countryside Survey 2007	Matched pairs	
Α	4	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in wetland plant species richness	England + Wales	Countryside Survey 2007	Independent	
Α	5	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in wetland plant species richness	England + Wales	Countryside Survey 2007	Independent	

	mber	Description	Region	Data used	Design	Page no.
Α	6	Streams: Power analysis of sample size required at time1 and time2 to detect a change in Trophic Diatom Index 3	England + Wales	Environment Agency national monitoring programme 2016 data	Independent	
Α	7	Streams: Power analysis of sample size required at time1 and time2 to detect a change in Trophic Diatom Index 3	England + Wales	Environment Agency national monitoring programme 2016 data	Matched pairs	
Α	8	Streams: power analysis of sample size required at time1 and time2 to detect a change in Riverfly ARMI monitoring score	England + Wales	Riverfly survey 2016	Matched pairs	
Α	9	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in Riverfly ARMI monitoring score	England + Wales	Riverfly survey 2016	Independent	
Α	10	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in stream macroinvertebrate taxon richness	England + Wales	Countryside Survey 2007	Matched pairs	
A	11	Streams: power analysis of sample size required at time ₁ and time ₂ to detect a change in stream macroinvertebrate taxon richness	England + Wales	Countryside Survey 2007	Independent	
Α	12	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in pond macroinvertebrate species richness	England + Wales	Countryside Survey 2007	Matched pairs	
Α	13	Ponds: power analysis of sample size required at time ₁ and time ₂ to detect a change in pond macroinvertebrate species richness	England + Wales	Countryside Survey 2007	Independent	

Table 11. Key to detailed power analyses in Appendix 1 (continued)

Table 11. Key to detailed pow	wer analyses in Appendix ⁻	(continued)
-------------------------------	---------------------------------------	-------------

	ıble ımber	Description	Region	Data used	Design	Page no.
Α	14	Fish in streams: power analysis of sample size required at time1 and time2 to detect a change in fish species richness in streams	England + Wales	Water Friendly Farming project 2012 and 2013	Independent	
Α	15	Fish in streams: power analysis of sample size required at time1 and time2 to detect a change in fish species richness in streams	England + Wales	Water Friendly Farming project 2012 and 2013	Matched pairs	

6. Options for collating, analysing and archiving data

In this section opportunities to feed data into existing recording schemes are reviewed as well as potential approaches to data collation, data analysis, reporting and archiving.

6.1 Existing recording schemes

The NT should help recording groups to focus on particular sites by highlighting interesting species or recording opportunities.

Recommendation 12: We recommend that for the taxa for which standard recording schemes are available (see Table 4) surveyors should be strongly encouraged to work with national recording schemes and Local Environmental Records Centres to collect records for these groups. Special attention should be payed to the species of conservation concern listed in Table 12.

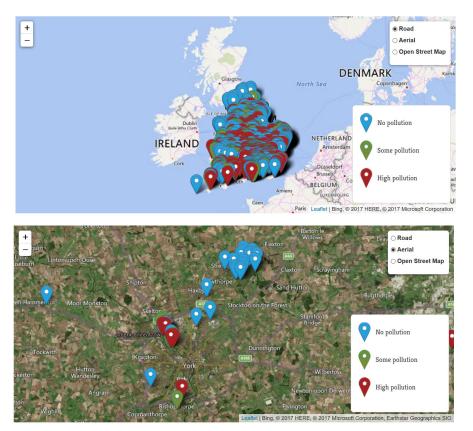
A checklist of activities and processes to be put in place to encourage recording should include:

- Promoting the use of iRecord for ad hoc casual records
- Encourage Recording Schemes to suggest that local recorders visit NT properties.
- Suggesting that to each property that they should be in contact with recording Schemes and Local Environmental Records Centres.
- Establish agreements with schemes to return data to National Trust at regular intervals if this is not already done.

6.2 Data collation

6.2.1 Habitat related data and species of conservation concern monitoring

Pond and water quality data should be added to the WaterNet database which is designed to hold the type of data being collected in the present project (see example of water quality data in Figure 11). The WaterNet database is publicly accessible and will be supported in the long-term by Freshwater Habitats Trust.


For other waterbodies, Freshwater Habitats Trust is currently planning further development of the WaterNet database to handle data from a range of waterbody types. Initially the aim will be to incorporate small streams and ditches. Small lakes can effectively be covered by the existing database. These developments are part of planned new projects (note that funding will need to be raised to do this work so this is not included in the present project).

In the short term, the professional stream datasets collected in the present work can be collated in standard Excel spreadsheets. These can be shared and made available to all users via the Freshwater Habitats Trust website.

Eventually it may be useful for the WaterNet database to provide facilities to hold data collected using standard WFD methods waterbodies. This may be useful to hold data from waterbodies surveyed using WFD methods which are not part of survey programmes managed by the statutory agencies. For example, data from small lakes in the size range 5-50 ha which may not be part of routine monitoring programmes could be stored either by the statutory agencies or in the WaterNet database.

Advantages of this approach are that the database has been designed specifically for the purpose of handling the type of biological and environmental data being collected by the present work, it is designed to be fully accessible to the public and users (although data can be kept confidential). The database is being completed as part of current HLF funded work. Disadvantages of this approach are that further (planned) development work is needed to incorporate streams and ditches. Also there will be an on-going need to raise funds to

maintain the database, although as a core activity of Freshwater Habitats Trust a range of funding streams should be available to support the activity.

Figure 11. Example screen shots from the WaterNet database showing Clean Water for Wildlife records.

(a) Screen shot of opening page of Clean Water for Wildlife. So far c6000 of c10,000 records are on-line (b) Strensall Common north-eat of York is a Flagship Ponds site and a local clean water hot spot.

6.2.2 Other data management solutions

It may be worth investigating options to store small waterbody data in the Catchment Data Explorer. However, at present this database does not present detailed site or biological data but provides summaries of WFD scores and other administrative data. It does not provide information on lakes, even where these are WFD waterbodies.

Advantages of this approach are that the system would be integrated with the state sector. At present the substantial practical disadvantages are that none of the data currently being collected can be handled by the Environment Agency system and would require considerable development work.

A third strategy would be to store data long-term with the Freshwater Biological Association. The advantage of this would be that the Freshwater Biological Association has a long history of storing and making data available. The main disadvantage would be that there is no current database run by the FBA that could hold the data in the way that the WaterNet database is designed to do, meaning that a new system would be needed to create an online facility.

6.3 Data analysis

For data analysis and reporting, for the professional wetland plant survey, we would recommend a short annual update summarising project progress and interesting observations, followed by a major report after 5 years.

The programme could form the basis for a new multi-partner annual/biannual State of Freshwater Wildlife/Habitats/Ecosystems report.

6.4 Archiving data

There are several options for archiving the data from the water quality and wetland plant surveys. These could include:

- Producing regular GIS downloads for National Trust.
- Placing all data on WaterNet which is in the public domain.
- Regular data downloads to standard formats such as Excel or Access. These should be archived on National Trust servers and Freshwater Habitats Trust, and could also potentially be placed on the servers of the Freshwater Biological Association. In general, our approach would be to ensure that data were widely distributed on the Internet as this seems the most likely route for ensuring that data will survive in the long-term.
- It would perhaps also be worth considering place results on the NERC data repository could also be considered, although this may change in the near future.
- Produce long-term data management plan.

As part of the work of the survey we would produce a simple long-term data management plan at the end of Year 1 of the project.

7. Suggestions for monitoring particular sites or particular interventions

A national monitoring scheme is unlikely to be sufficient to capture the effect of changes made to land and water management intended to restore and improve the water environment at key sites. For this reason more detailed Tier 4 monitoring of key sites and programmes (e.g. through the Riverlands programme) is also needed. Brief recommendations are made about particular monitoring needs for this level of the monitoring programme.

The Trust already has an excellent track record of involvement in ground-breaking freshwater research and there are options for a variety of more advanced site specific projects covering many aspects of the National Trust interests. The main principles of this monitoring are briefly discussed below.

7.1 Management interventions

Management interventions – such as those at Holnicote (natural flood management), Coleshill (river restoration) and techniques applied under the Water Friendly Farming programme run by Freshwater Habitats Trust and Game & Wildlife conservation Trust – often require bespoke and detailed monitoring programmes to obtain reliable evidence of their effect. For such projects, the main principles for securing good evidence are:

- Good before monitoring with before and after and controls if possible using the BACI (Before-After-Control-Impact) design. Such programmes can be expensive and it is often better to focus monitoring efforts on to a small number of sites to get usable results from a few locations, rather than spread effort too thinly getting unusable data from a lot of sites.
- Partnerships. For similar reasons, it is often beneficial to develop projects in partnership so that resources can be better focused to make a real impact rather than trying to spread resources too thinly.
- Ensuring that the potential to incorporate data into models is taken into account to allow exploration of other scenarios or extend beyond the monitored period (the latter may be especially useful for interventions that affect hydrology).

7.2 Sites

The Trust is likely to have a significant number of sites (low 10s of sites) at which monitoring of water environment projects could generate nationally and internationally significant information on the effects of management to protect freshwater ecosystems and resources. This work could include important baseline datasets that of general relevance to the management of freshwaters including tracking change over time, reviewing the effects of land management and detecting changes driven by external drivers (pressures, climate change).

Specific sites which have already provided nationally and internationally important data include:

- Holnicote Estate natural flood management work
- Coleshill Estate river restoration and catchment freshwater biodiversity work.

There are also likely to be sites where work to protect specific endangered species could also contribute to better general understanding of the threats to freshwater biota generally including (but not limited to):

• Lizard temporary ponds water plants

- Protecting and restoring high quality small lakes: e.g. Studland in Dorset, Lake District tarns (e.g. Burnmoor Tarn).
- Fen restoration in Wicken area in Cambridgeshire.

7.3 Species

National Trust properties support a large number of species of conservation concern. There are many opportunities to monitor the practical work in progress or needed to protect these species. Amongst potentially dozens of species four examples which have emerged from the PondNet programme are noted to exemplify the potential.

7.3.1 Great crested newt and common toad

National monitoring of the great crested newt as a volunteer eDNA-based survey has been established under PondNet in 2105-17. In 2018 this work is expected to continue and it may be worth assessing the potential for developing an eDNA-based survey of great crested newts on Trust property to complement this programme. Volunteers enjoy collecting eDNA samples and datasets can be reliably compared with the national dataset.

The existing great crested newt eDNA programme provides metrics which are well suited to Trust properties, particularly the number of ponds occupied per square km which give a good estimate of the strength of populations and the quality of ponds in a landscape. Thus at present, in 1 km squares with great crested newts on average about half of all ponds are occupied. National Trust properties could assess themselves against this value as a target, aiming to achieve greater than 50% pond occupancy as a measure of success in maintaining strong newt populations. Note that such targets could be achieved either by pond management or pond creation.

Common toads are probably declining more noticeably than great crested newts at present. Although still comparatively frequent in the north, in the south they are probably found in similar numbers of ponds as great crested newts (Wilkinson and Arnell, 2013).

Although detecting common toads using traditional survey methods is comparatively simple, it would be of interest to use eDNA multi-species tests to assess this species, alongside the other widespread amphibian species.

7.3.2 Starfruit

As a result of the PondNet work on Flagship sites which support Starfruit, including the National Trust property at Headley Heath, specialists involved in the management of the species are planning a workshop in 2018 to tackle the practical and monitoring issues facing this species. It is likely that National Trust properties will continue to provide important practical information about this most sensitive of the so-called 'mud plants' which depend on high quality seasonal and gently grazed ponds.

7.3.3 Brown Galingale

National Trust owns the site at Cock Marsh in Buckinghamshire which has the UKs strongest population of this highly endangered sedge. Freshwater Habitats Trust is planning to continue partnership monitoring and protection of this plant as part of its Flagship Ponds programme, and the site provides an outstanding model of the subtleties of managing high quality ponds.

Table 12. Species of conservation concern recorded on the National Trust estate

Species highlighted in bold may be suitable for vo Aeshna isosceles Agabus (Gaurodytes) conspersus Agabus melanarius Agabus uliginosus Agabus unguicularis Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes Bagous limosus	Dunteer monitoring
Agabus (Gaurodytes) conspersus Agabus melanarius Agabus uliginosus Agabus unguicularis Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	1 4 2 2 12 1 24
Agabus melanarius Agabus uliginosus Agabus unguicularis Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	4 2 2 12 1 24
Agabus uliginosus Agabus unguicularis Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	2 2 12 1 24
Agabus unguicularis Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	2 12 1 24
Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	12 1 24
Anacaena bipustulata Aphrosylus mitis Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	1 24
Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	24
Arvicola amphibius Arvicola terrestris Austropotamobius pallipes	
Arvicola terrestris Austropotamobius pallipes	Λ
	4
	23
Jugous innosus	1
Barbastella barbastellus	3
Beris clavipes	4
Beris fuscipes	7
Berosus (Berosus) affinis	1
Berosus affinis	4
Berosus signaticollis	4
Blysmus compressus	1
Bufo bufo	63
Carex vulpina	1
Cercyon convexiusculus	5
Cercyon depressus	1
Cercyon tristis	1
Chaetarthria simillima	1
Chara fragifera	2
Chirocephalus diaphanus	4
Cicendia filiformis	1
Coregonus lavaretus	1
Cottus gobio	6
Cyperus fuscus	1
Cyperus longus	9
Damasonium alisma	1
Deronectes latus	2
Deschampsia setacea	1
Dicranota gracilipes	1
Dixa maculata	1
Donacia impressa	1
Donacia thalassina	1
Drupenatus nasturtii	2
Dytiscus circumflexus	5
Elatine hexandra	<u>_</u> 1
Eleocharis acicularis	1
Enochrus affinis	1
Enochrus halophilus	2

Table 12. Species of conservation concern recorded on the National Trustestate (continued)

Species	Number of properties where found			
Species highlighted in bold may be suitable for volunteer monitoring				
Enochrus ochropterus	1			
Gnaphalium uliginosum	41			
Gyrinus minutus	1			
Gyrinus urinator	1			
Haliplus (Haliplinus) heydeni	2			
Hebrus pusillus	1			
Helochares lividus	5			
Helochares punctatus	3			
Helophorus (Atracthelophorus) arvernicus	1			
Helophorus dorsalis	1			
Helophorus griseus	1			
Hydaticus seminiger (easy to identify water beetle)	2			
Hydrocharis morsus-ranae	6			
Hydrocyphon deflexicollis	1			
Hydroporus longicornis	1			
Hydroporus longulus	3			
Hydroporus marginatus	1			
Hygrotus (Hygrotus) decoratus	1			
Hypericum undulatum	6			
Ilybius aenescens	1			
Ilybius guttiger	1			
Isoetes lacustris	2			
Juncus capitatus	3			
Lemna gibba	5			
Limonia trivittata	1			
Lipsothrix errans	2			
Littorella uniflora	3			
Luronium natans	2			
Lycopodiella inundata	3			
Mentha pulegium	2			
Mentha suaveolens	4			
Mentha suaveolens x longifolia = M. x rotundifolia	1			
Myotis bechsteinii	1			
Natrix natrix	10			
Nebrioporus (Nebrioporus) depressus	1			
Nyctalus noctula	11			
Nymphoides peltata	2			
Ochthebius marinus	1			
Oenanthe fistulosa	5			
Oreodytes davisii	1			
Orthonevra geniculata	1			
Oxycera morrisii	1			
Oxycera pygmaea	1			
Myotis bechsteinii Natrix natrix Nebrioporus (Nebrioporus) depressus Nyctalus noctula Nymphoides peltata Ochthebius marinus Oenanthe fistulosa Oreodytes davisii Orthonevra geniculata Oxycera morrisii	1 10 1 1 2 1 2 1 5 1 1 1 1			

Table 12. Species of conservation concern recorded on the National Trustestate (continued)

Species	Number of properties where found
Species highlighted in bold may be suitable for v	olunteer monitoring
Persicaria mitis	1
Pilularia globulifera	1
Pipistrellus pygmaeus	3
Potamogeton alpinus	1
Potamogeton gramineus	1
Potamogeton gramineus x lucens = P. x angustifolius	1
Potamogeton lucens	1
Potamogeton perfoliatus	4
Pyrola rotundifolia subsp. maritima	1
Ranunculus penicillatus subsp. penicillatus	1
Rhinolophus hipposideros	5
Rhynchospora alba	2
Ruppia cirrhosa	2
Salmo salar	2
Scleranthus annuus subsp. annuus	1
Scorzonera humilis	1
Sium latifolium	1
Sphagnum sp.	6
Spirodela polyrhiza	11
Stratiomys potamida	2
Stratiotes aloides	2
Tasiocera robusta	1
Teucrium scordium	1
Triturus cristatus	9
Utricularia vulgaris s.s.	1

8. Develop a matrix of options with details of costs, frequency and delivery options (professional versus volunteer)

8.1 Frequency of survey

8.1.1 Water quality

For Tier 2 monitoring it is recommended that water quality surveys are undertaken at the wetland plant monitoring sites at the same time as plant survey data are collected (i.e. a 5-year rolling programme). This will provide a broad indication of nitrate and phosphate levels at the monitored sites, typically sufficient to group sites into broad categories of clean, moderately polluted and polluted. However, unless sites are subject to very pronounced change (e.g. dredging of very silty polluted ponds, removal of septic tank nutrient sources on small streams) it is unlikely that there will be substantial changes seen in water quality at these locations.

At the Tier 3 sites (i.e. the individual properties) volunteers will be encouraged to undertake landscape-wide survey of waterbodies on their sites. We would suggest that water bodies are resurveyed at 3-5 yearly intervals, with sites being revisited to maximise statistical power to detect change. As far as possible surveyors should be encouraged to revisit at the same time of year. Sampling will primarily be intended to characterise pollutant levels in the landscapes but if substantial changes are made to waterbodies, or new waterbodies are created, it is possible that changes will be detected.

We suggest that situations where volunteers are particularly encouraged to undertake monitoring would include:

- Initial reviews of landscape-wide water quality encompassing all waterbodies
- Repeat surveys of high quality water bodies to provide some potential early warning of deterioration, although it must be noted that to detect an increase in nutrient levels will indicate quite substantial deterioration.
- Monitoring of waterbodies which have been subject to significant management. Such monitoring will be to some extent experimental as at present we have little experience of the sensitivity of the test kits to detecting change in these locations.

It is likely that volunteers and site managers will find other situations where the test kits are useful as experience of using them grows.

8.1.2 Wetlands plants

For the wetland plant monitoring programme of we would recommend a 5 year rolling programme with the objective of surveying sufficient sites over 5 years to provide the number of samples needed to give analyses sufficient statistical power to detect change.

For plants a 5 year programme of survey is short enough to treat samples as coming from the same time period. Although there is variability between years, repeat surveys in the Water Friendly Farming landscape over three years show that patterns across these landscape are broadly similar over such a time period, with detectable change occurring after interventions.

Monitoring data collected over the first 2-3 years could also be used to assess the potential for detecting trends over a shorter period, and potentially reducing sample size.

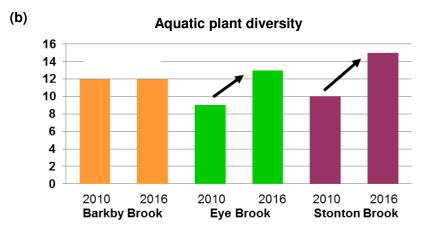


Figure 12. Aquatic plant diversity trends in the Water Friendly Farming project.

(a) Trends over the first three baseline years of the project were consistent in different waterbody types and (b) following introduction of clean water ponds a quick and landscape wide response was observed in aquatic plant species richness.

8.2 Cost summary

Costs are shown in Table 13 for a programme combining volunteer water pollution monitoring, monitoring of selected species of conservation concern, and professional monitoring of wetland plants.

Costs of a broader programme involving professional sampling of diatoms and freshwater invertebrates are given in Table 14. These programmes would only be possible as part of a larger separately funded programme.

Table 13. Costs of the base programme of volunteer water pollutionassessment, monitoring of species of conservation concern and professionalwetland plant survey

Activity	Notes (including day rates)	Sites / day	Ponds	Streams	Days	Cost	Per year cost over 5 years
Water testing							
Test kits: £3/site	£3.00		500	500		£3,000	£600
Fieldwork			Days	s/site			
Plant survey	£300/day	4	100	100	50		
Travel	Hours	1	14	14	29		
					79	£23,571	£4714
Travel	50 miles/site			5000		£2,000	£400
Accommodation	20 nights			20		£1,200	£240
							£5354
Analysis							
Data entry	£300/day	30	3.3	3.3		£2,000	£400
Analysis		10				£3,000	£600
Reporting and dis	ssemination	10				£3,000	£600
					Sub- total	£37,771	
Volunteer work		Training sites	Meetings	Days/site			
Volunteer co- ordination	£250/day	20	20	2		£10,000	£2,000
Travel and accommodation costs	c.£100/ meeting		20			£2000	£500
					Total	£49,771	£9,954
					VAT is	0% if a gr	ant

Table 14. Additional professional and volunteer monitoring of diatoms,macroinvertebrates and other groups

Activity	Details	Sites per day	Staff cost / day	Subtotal	Cost per year over 5 years
Diatom survey	Collection	5	£250	£5,000	£1,000
	Identification		£60	£6,000	£1,200
	Travel, accommodation			£2,000	£400
	Analysis & Reporting	10	£350	£3,500	£700
				£16,500	£3,300
Invertebrate samples: 50 ponds, 50 streams	Collection	5	£250	£5,000	£1,000
	Processing	0.5	£250	£50,000	£10,000
	Identification	0.5	£350	£70,000	£14,000
	Analysis	20	£350	£7,000	£1,400
Total cost				£132,000	£26,400

8.3 Delivery options

The delivery options for the monitoring of National Trust properties will combine professional and volunteer surveyors, building on Freshwater Habitats Trust extensive experience of large scale professional surveys (e.g. Countryside Survey, National Pond Survey) and novel volunteer-based monitoring, such as great crested newt eDNA work as part of PondNet and the Clean Water for Wildlife water pollution monitoring programme.

The broad structure of the proposed work is summarised in Figure 13.

8.3.1 Professional surveyors

Wetland plant surveys

The core of Tier 2 monitoring will use professionally undertaken standard wetland plant survey techniques to assess pond and stream aquatic biodiversity, following methods developed for Countryside Survey and landscape-wide biodiversity studies (e.g. techniques applied in Williams et al. 2004).

At the sites visited we will also routinely collect standard environmental data from both still and running waters. We will also collect PackTest nitrate and phosphate data.

Other biotic groups if funds become available

Wetland plants provide a cost effective way of assessing the condition of freshwaters and allow diagnosis of environmental stressors (e.g. nutrient pollution). However, a substantially more nuanced view of freshwater quality is obtained by considering other biotic groups,

including those routinely considered under Water Framework Directive (i.e. invertebrates, algae, fish) and individual protected species. During 2018 we will work together with National Trust and other partners to explore the potential for a new national monitoring programme for small waters including these groups, and for protected freshwater species.

We expect this work to combine a mixture of professional and volunteer programmes, particularly involving the use of eDNA.

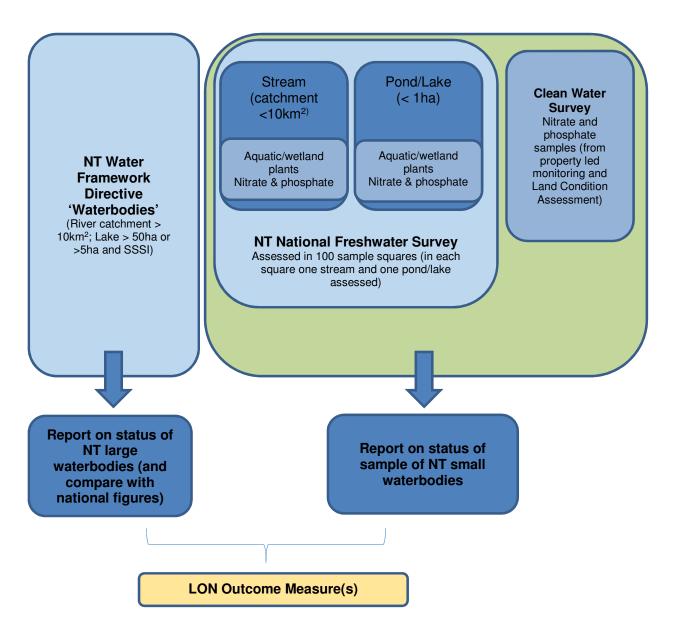


Figure 13. Schematic of proposed monitoring approach

8.3.2 Volunteers with professional co-ordination

To get the most from volunteers it is valuable to provide professional co-ordination and guidance as part of developing a community of surveyors. We suggest that people interested in collecting data voluntarily on National Trust properties are built into a national monitoring programme framework, continuing and extending the work of PondNet and the Clean Water for Wildlife survey. As part of the training component of the proposed work we will set volunteers up to collect data from the waterbodies on the estate they are interested in and provide simple feedback on the implications of the results.

The three main component we expect to focus on will be:

- Water quality surveys: we will encourage National Trust properties to collect estate wide data on the condition of all waters following the model developed in PondNet and other catchment projects (e.g. R. Ock).
- Environmental data describing waterbodies (initially ponds; later running waters and ditches): as well as collecting pond data it may be valuable to initiate some pilot work assessing headwater streams as this information is of interest to Naturel England.
- Individual species of conservation concern using traditional methods (e.g. pillwort, brown galingale) or eDNA.

8.3.3 Tier 3 monitoring

We will run Tier 3 monitoring training opportunities for volunteers at National Trust properties. This will cover water quality, amphibians and environmental data initially. If possible we will also provide training for specific endangered species where volunteers are able to provide useful data on protected species.

8.3.4 Tier 4 monitoring

Some recommendations on the principles of monitoring and data collection for evaluating innovative land and water management interventions are given in Section 7. Tier 4 monitoring requires technical professional inputs and will be developed on a case by case basis.

Interesting and potentially influential monitoring programmes are likely to develop from innovative practical management programmes such as work to increase landscape wide freshwater biodiversity at the Coleshill estate (e.g. replicating on a larger scale what has been done in the Water Friendly Farming project) or work to understand the benefit of river restoration at Coleshill, and to develop solutions to increase those benefits.

The National Trust would also be in a good position to test innovative solution to current intractable water management problems, particularly those involving diffuse pollution.

9. References

Biggs, J., P. J., Williams, M., Whitfield, G. Fox and P. Nicolet, 2000. Biological techniques of still water 1160 quality assessment. Phase 3 Methods development. Environment Agency R&D Technical Report E110. 1161 Environment Agency. Bristol.

Biggs J., McGoff E, Ewald N, Williams P, Dunn F and Nicolet, P. 2016. Clean Water for Wildlife technical manual. Evaluating PackTest nitrate and phosphate test kits to find clean water and assess the extent of pollution. Freshwater Habitats Trust, Oxford.

Biggs, J., von Fumetti, S., Kelly-Quinn, M., 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia, 793, 3–39.

Brown, C. D., N. L. Turner, J. M. Hollis, P. H. Bellamy, J. Biggs, P. J. Williams, D. J. Arnold, T. Pepper and S. J. Maund, 2006. Morphological and physico-chemical properties of British aquatic habitats potentially exposed to pesticides. Agriculture, Ecosystems and Environment 113: 307–319.

Cham S, Nelson B, Parr A, Prentice S, Smallshire D and P Taylor (eds.), 2014. Atlas of Dragonflies in Britain and Ireland. Published by the Field Studies Council for the Biological Records Centre AND Centre for Ecology & Hydrology, with the British Dragonfly Society.

Clarke, S. J., 2015. Conserving freshwater biodiversity: the value, status and management of high quality ditch systems. Journal for Nature Conservation 24: 93–100.

Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield & P. J. Williams, 1995. Temporary and permanent ponds – an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–134.

Crawford, A. 2011. Fifth otter survey of England. 2009 – 2010. Technical Report. Environment Agency, Bristol.

Darras KFA, Batary P, Furnas B, Fitriawan I, Mulyani Y, Tscharntke T, 2017. Autonomous bird sound recording outperforms direct human observation: Synthesis and new evidence. bioRxiv, 117119, <u>https://www.biorxiv.org/content/early/2017/03/17/117119</u>.

Department of the Environment and The Welsh Office, 1971. Report of a river pollution survey of England and Wales 1970. HMSO, London.

Environment Agency, 2017. Managing salmon fisheries in England and on the Border Esk. Consultation document. Environment Agency, Bristol.

Ewald NC, Williams P, Dunn F, and Biggs J (2013). Developing a national pond surveillance strategy for localised species based on the results of PondNet 2012. Report to Natural England. Pond Conservation, Oxford.

Harper, D.M., Wasiak P. & Wasiak, K. 2009. Effects of phosphorus upon freshwater lotic ecosystems. Appendix 4 In: ADAS (2009) Linking agricultural land use and practices with a high risk of phosphorus loss to chemical and ecological impacts in rivers (the PARIS project). Research Project Final Report (SID5) to Defra. Defra, London.

Hayhow DB, Bond AL, Douse A, Eaton MA, Frost T, Grice PV, Hall C, Harris SJ, Havery S, Hearn RD, Noble DG, Oppel S, Williams J, Win I and Wotton S (2017). The state of the UK's birds 2016. The RSPB, BTO, WWT, DAERA, JNCC, NE, NRW and SNH, Sandy, Bedfordshire.

Jeppesen, E., P. Nõges, T.A. Davidson, J. Haberm an, T. Nõges, K. Blank, T.L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, L.S. Johan sson, R. Bjerring, S.L. Amsinck, 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the

ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.

McGoff E, Dunn F, Cachazo LM, Williams P, Biggs J, Nicolet P and NC Ewald (2017). Finding clean water habitats in urban landscapes: professional researcher vs citizen science approaches. Science of the Total Environment, 581: 105–116.

Moss, B., P. Johnes and G. Phillips, 1996. The monitoring of ecological quality and the classification of standing water in temperate regions: A review and proposal based on a worked scheme for British waters. Biological Review 71: 301-339.

Palmer, M., M. Drake, and N. Stewart. 2013. A manual for the survey and evaluation of the aquatic plant and invertebrate assemblages of grazing marsh ditch systems. Version 6. Buglife, Peterborough, UK.

Perrow M and Thomlinson M, 2000. The role of fish in pond community structure and function. In: Pond Action (2000). Proceedings of the Ponds Conference 1998. Pond Action, Oxford.

Plantlife, 2009. Looking after bryophytes in Scotland's springs and flushes. Back from the brink management series. Plantlife, Salisbury.

The Rivers Trust (2016). Citizen Science and Volunteer Monitoring Resource Pack 2016. Accessible online at:

https://www.catchmentbasedapproach.org/images/PDFS/CaBACitizenScienceVolunteerMon itoringLOWRES.pdf.

Stefanoudis, P.V., Sayer, C.D., Almeida, D., Greaves, H., Smith, E., Robson, H., Davidson, T.A. (2017) Consequences of fish for cladoceran, water beetle and macrophyte communities in a farmland pond landscape. Fundamental & Applied Limnology, 190, 141-156. Doi.org/10.1127/fal/2017/1004

Stroh, P.A., Leach, S.J., August, T.A., Walker, K.J., Pearman, D.A., Rumsey, F.J., Harrower, C.A., Fay, M.F., Martin, J.P., Pankhurst, T., Preston, C.D. & Taylor, I. 2014. A Vascular Plant Red List for England. Botanical Society of Britain and Ireland, Bristol.

Thompson MSA, Bankier C, Bell T, Dumbrell AJ, Gray C, Ledger ME, Lehmann K, Mckew BA, Sayer CD, Shelley F, Trimmer M, Warren SL, Woodward G, 2016, Gene-to-ecosystem impacts of a catastrophic pesticide spill: testing a multilevel bioassessment approach in a river ecosystem, Freshwater Biology, 61: 2037-2050.

Williams P, Ewald E, Cannon C, and Biggs J (2012). Developing a national pond surveillance strategy for widespread and localised species. Report to Natural England. Pond Conservation, Oxford.

Appendix 1. Power analysis tables

Table A1.1. Ponds: power analysis of sample size required at Time₁ and Time₂ to detect a change in nitrate concentrations in ponds Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Independent

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	13748	3439	1529	861	552	384	283	217
65	15437	3861	1717	967	619	431	317	243
70	17322	4332	1926	1084	695	483	355	273
75	19478	4871	2166	1219	781	543	399	306
80	22027	5508	2449	1379	883	614	452	346
85	25197	6301	2801	1577	1010	702	516	396
90	29488	7373	3278	1845	1181	821	604	463
95	36467	9118	4054	2281	1461	1015	746	572
α _{0.10}			% ch	ange				
			/0 011	ange				
Power	10	20	30	40	50	60	70	80
Power 60	10 10107	20 2528			50 406	60 282	70 208	80 159
			30	40				
60	10107	2528	30 1124	40 633	406	282	208	159
60 65	10107 11564	2528 2892	30 1124 1286	40 633 724	406 464	282 323	208 237	159 182
60 65 70	10107 11564 13204	2528 2892 3302	30 1124 1286 1468	40 633 724 827	406 464 530	282 323 368	208 237 271	159 182 208
60 65 70 75	10107 11564 13204 15095	2528 2892 3302 3775	30 1124 1286 1468 1679	40 633 724 827 945	406 464 530 605	282 323 368 421	208 237 271 309	159 182 208 237
60 65 70 75 80	10107 11564 13204 15095 17350	2528 2892 3302 3775 4339	30 1124 1286 1468 1679 1929	40 633 724 827 945 1086	406 464 530 605 695	282 323 368 421 483	208 237 271 309 355	159 182 208 237 272

Table A1.2. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in nitrate concentrations in ponds

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Matched pairs

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	2529	633	282	159	103	72	53	41
65	2893	724	323	182	117	82	60	47
70	3303	827	368	208	133	93	69	53
75	3775	945	421	237	152	106	78	60
80	4339	1086	483	273	175	122	90	69
85	5045	1262	562	317	203	142	104	80
90	6009	1503	669	377	242	168	124	95
95	7594	1899	845	476	305	212	156	120
α _{0.10}			% ch	ange				
Power	10	20	30	40	50	60	70	80
Power 60	10 1654	20 414	30 185	40 104	50 67	60 47	70 35	80 27
60	1654	414	185	104	67	47	35	27
60 65	1654 1950	414 488	185 217	104 123	67 79	47 55	35 41	27 31
60 65 70	1654 1950 2289	414 488 573	185 217 255	104 123 144	67 79 92	47 55 64	35 41 48	27 31 37
60 65 70 75	1654 1950 2289 2685	414 488 573 672	185 217 255 299	104 123 144 169	67 79 92 108	47 55 64 75	35 41 48 56	27 31 37 43
60 65 70 75 80	1654 1950 2289 2685 3163	414 488 573 672 791	185 217 255 299 352	104 123 144 169 199	67 79 92 108 127	47 55 64 75 89	35 41 48 56 65	27 31 37 43 50

Table A1.3. Ponds: power analysis of sample size required at Time₁ and Time₂ to detect a change in nitrate concentrations in ponds

to detect a change in nitrate concentrations in ponds Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Countryside Survey 2007 Stratification – None Design – Independent

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	63777	15946	7088	3988	2553	1774	1304	998
65	71610	17904	7958	4478	2866	1991	1463	1121
70	80356	20090	8930	5024	3216	2234	1642	1258
75	90358	22591	10042	5649	3616	2512	1846	1414
80	102187	25548	11356	6389	4089	2840	2087	1599
85	116892	29225	12990	7308	4678	3249	2388	1828
90	136799	34201	15202	8552	5474	3802	2794	2139
95	169181	42297	18800	10576	6769	4701	3455	2645
α _{0.10}			% ch	ange				
Power	10							
	10	20	30	40	50	60	70	80
60	46886	20 11723	30 5211	40 2932	50 1877	60 1304	70 958	80 734
60 65								
	46886	11723	5211	2932	1877	1304	958	734
65	46886 53644	11723 13412	5211 5962	2932 3354	1877 2147	1304 1491	958 1096	734 840
65 70	46886 53644 61254	11723 13412 15315	5211 5962 6807	2932 3354 3830	1877 2147 2452	1304 1491 1703	958 1096 1251	734 840 958
65 70 75	46886 53644 61254 70029	11723 13412 15315 17508	5211 5962 6807 7782	2932 3354 3830 4378	1877 2147 2452 2803	1304 1491 1703 1947	958 1096 1251 1431	734 840 958 1096
65 70 75 80	46886 53644 61254 70029 80488	11723 13412 15315 17508 20123	5211 5962 6807 7782 8944	2932 3354 3830 4378 5032	1877 2147 2452 2803 3221	1304 1491 1703 1947 2237	958 1096 1251 1431 1644	734 840 958 1096 1259

Table A1.4. Ponds: power analysis of sample size required at time1 and time2 to detect a change in nitrate concentrations in ponds

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Results from Countryside Survey 2007

Stratification – None

Design – Matched pairs

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	11729	2933	1304	734	471	327	241	185
65	13416	3355	1492	840	538	374	275	211
70	15317	3830	1703	959	614	427	314	241
75	17510	4379	1947	1096	702	488	359	275
80	20124	5032	2237	1259	806	560	412	316
85	23401	5851	2601	1464	937	651	479	367
90	27875	6970	3098	1744	1116	776	570	437
95	35225	8807	3915	2203	1410	980	720	552
α _{0.10}			% ch	ange				
Power	10	20	30	40	50	60	70	80
Power 60	10 7669	20 1918	30 853	40 480	50 308	60 214	70 157	80 121
60	7669	1918	853	480	308	214	157	121
60 65	7669 9044	1918 2262	853 1006	480 566	308 363	214 252	157 185	121 142
60 65 70	7669 9044 10616	1918 2262 2655	853 1006 1180	480 566 664	308 363 425	214 252 296	157 185 218	121 142 167
60 65 70 75	7669 9044 10616 12454	1918 2262 2655 3114	853 1006 1180 1385	480 566 664 779	308 363 425 499	214 252 296 347	157 185 218 255	121 142 167 195
60 65 70 75 80	7669 9044 10616 12454 14673	1918 2262 2655 3114 3669	853 1006 1180 1385 1631	480 566 664 779 918	308 363 425 499 588	214 252 296 347 408	157 185 218 255 300	121 142 167 195 230

Table A1.5. Ponds: power analysis of sample size required at time1 and time2 to detect a change in phosphate concentrations in ponds Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Independent

α _{0.05}	%	change	in phosp	hate con	centratio	า		
Power	10	20	30	40	50	60	70	80
60	11522	2882	1282	722	463	322	237	182
65	12937	3236	1439	810	519	361	266	204
70	14517	3631	1615	909	583	405	298	229
75	16324	4082	1816	1022	655	455	335	257
80	18460	4617	2053	1156	740	515	379	290
85	21117	5281	2348	1322	847	589	433	332
90	24712	6180	2748	1546	990	688	506	388
95	30562	7642	3398	1912	1224	851	626	480
α _{0.10}	%	change	in phosp	hate con	centratio	า		
α _{0.10} Power	% 10	change 20	in phosp 30	hate con 40	centration 50	n 60	70	80
							70 174	80 134
Power	10	20	30	40	50	60		
Power 60	10 8470	20 2119	3 0 942	40 531	50 340	60 237	174	134
Power 60 65	10 8470 9691	20 2119 2424	30 942 1078	40 531 607	50 340 389	60 237 271	174 199	134 153
Power 60 65 70	10 8470 9691 11066	20 2119 2424 2767	30 942 1078 1231	40 531 607 693	50 340 389 444	60 237 271 309	174 199 227	134 153 174
Power 60 65 70 75	10 8470 9691 11066 12651	20 2119 2424 2767 3164	30 942 1078 1231 1407	40 531 607 693 792	50 340 389 444 507	60 237 271 309 353	174 199 227 260	134 153 174 199
Power 60 65 70 75 80	10 8470 9691 11066 12651 14540	20 2119 2424 2767 3164 3636	30 942 1078 1231 1407 1617	40 531 607 693 792 910	50 340 389 444 507 583	60 237 271 309 353 405	174 199 227 260 298	134 153 174 199 229

Table A1.6 .Ponds: power analysis of sample size required at time1 and time2 to detect a change in phosphate concentrations in ponds Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Matched pairs

α _{0.05}	%	6 change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	2120	531	237	134	86	60	45	35
65	2425	607	271	153	98	69	51	39
70	2768	693	309	174	112	78	58	45
75	3164	792	353	199	128	89	66	51
80	3636	910	405	229	147	102	76	58
85	4228	1058	471	266	170	119	88	67
90	5036	1260	561	316	203	141	104	80
95	6364	1592	708	399	256	178	131	101
α _{0.10}	%	6 change	in phosp	hate con	centratio	n		
α _{0.10} Power	۶ 10	6 change 20	in phosp 30	hate con 40	centratio 50	n 60	70	80
			<u> </u>				70 29	80 23
Power	10	20	30	40	50	60		
Power 60	10 1386	20 347	30 155	40 87	50 56	60 39	29	23
Power 60 65	10 1386 1634	20 347 409	30 155 182	40 87 103	50 56 66	60 39 46	29 34	23 26
Power 60 65 70	10 1386 1634 1918	20 347 409 480	30 155 182 214	40 87 103 121	50 56 66 78	60 39 46 54	29 34 40	23 26 31
Power 60 65 70 75	10 1386 1634 1918 2250	20 347 409 480 563	30 155 182 214 251	40 87 103 121 141	50 56 66 78 91	60 39 46 54 63	29 34 40 47	23 26 31 36
Power 60 65 70 75 80	10 1386 1634 1918 2250 2651	20 347 409 480 563 663	30 155 182 214 251 295	40 87 103 121 141 167	50 56 66 78 91 107	60 39 46 54 63 74	29 34 40 47 55	23 26 31 36 42

Table A1.7. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in phosphate concentrations in ponds

to detect a change in phosphate concentrations in ponds Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Countryside Survey 2007 Stratification – None Design – Independent

α _{0.05}	%	change	in phosp	hate con	centratio	า		
Power	10	20	30	40	50	60	70	80
60	11174	2795	1243	700	449	312	230	177
65	12546	3138	1396	786	504	350	258	198
70	14078	3521	1566	882	565	393	289	222
75	15830	3959	1761	991	635	442	325	249
80	17902	4477	1991	1121	718	499	367	282
85	20478	5121	2277	1282	821	571	420	322
90	23965	5993	2665	1500	961	668	491	376
95	29637	7411	3295	1854	1187	825	607	465
α _{0.10}				hate con	centratio	ı		
				hate con 40	centratio	n 60	70	80
α _{0.10}	%	change	in phosp				70 169	80 130
α _{0.10} Power	% 10	change 20	in phosp 30	40	50	60		
α _{0.10} Power 60	% 10 8214	change 20 2055	in phosp 30 914	40 515	50 330	60 230	169	130
α _{0.10} Power 60 65	% 10 8214 9398	change 20 2055 2351	in phosp 30 914 1045	40 515 589	50 330 377	60 230 262	169 193	130 148
α _{0.10} Power 60 65 70	% 10 8214 9398 10731	change 20 2055 2351 2684	in phosp 30 914 1045 1194	40 515 589 672	50 330 377 431	60 230 262 299	169 193 220	130 148 169
α _{0.10} Power 60 65 70 75	% 10 8214 9398 10731 12268	change 20 2055 2351 2684 3068	in phosp 30 914 1045 1194 1364	40 515 589 672 768	50 330 377 431 492	60 230 262 299 342	169 193 220 252	130 148 169 193
α₀.10 Power 60 65 70 75 80	% 10 8214 9398 10731 12268 14100	change 20 2055 2351 2684 3068 3526	in phosp 30 914 1045 1194 1364 1568	40 515 589 672 768 883	50 330 377 431 492 565	60 230 262 299 342 393	169 193 220 252 289	130 148 169 193 222

Table A1.8. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in phosphate concentrations in ponds

to detect a change in phosphate concentrations in ponds Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Countryside Survey 2007 Stratification – None Design – Matched pairs

α _{0.05}	q	% change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	2056	515	230	130	84	59	43	34
65	2351	589	263	148	95	67	49	38
70	2684	672	300	169	109	76	56	43
75	3068	768	342	193	124	87	64	49
80	3526	883	393	222	142	99	73	57
85	4100	1026	457	258	165	115	85	65
90	4884	1222	544	307	197	137	101	78
95	6172	1544	687	387	248	173	127	98
α _{0.10}	q	% change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	8214	0055	014					
		2055	914	515	330	230	169	130
65	9398	2055	914 1045	515 589	330 377	230 262	169 193	130 148
65 70								
	9398	2351	1045	589	377	262	193	148
70	9398 10731	2351 2684	1045 1194	589 672	377 431	262 299	193 220	148 169
70 75	9398 10731 12268	2351 2684 3068	1045 1194 1364	589 672 768	377 431 492	262 299 342	193 220 252	148 169 193
70 75 80	9398 10731 12268 14100	2351 2684 3068 3526	1045 1194 1364 1568	589 672 768 883	377 431 492 565	262 299 342 393	193 220 252 289	148 169 193 222

Table A1.9. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in nitrate concentrations in streams Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Independent

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	3051	764	341	193	124	87	64	50
65	3426	858	382	216	139	97	72	56
70	3844	963	429	242	156	109	80	62
75	4322	1082	482	272	175	122	90	70
80	4888	1223	545	307	197	138	102	78
85	5591	1399	623	351	226	157	116	89
90	6543	1637	729	411	264	184	136	104
95	8091	2024	901	508	326	227	167	128
α _{0.10}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	2243	562	251	142	91	64	47	37
65	2566	643	286	162	104	73	54	40
		0.0	200	102	104	75	54	42
70	2930	734	327	184	119	83	61	42
70 75	2930 3350							
		734	327	184	119	83	61	47
75	3350	734 838	327 373	184 211	119 135	83 94	61 70	47 54
75 80	3350 3850	734 838 964	327 373 429	184 211 242	119 135 155	83 94 108	61 70 80	47 54 62

Table A1.10. Streams: power analysis of sample size required at time1 and time₂ to detect a change in nitrate concentrations in streams

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Matched pairs

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	764	193	87	50	33	23	18	14
65	858	216	97	56	36	26	20	15
70	963	242	109	62	40	29	22	17
75	1082	272	122	70	45	32	24	19
80	1223	307	138	78	51	36	27	21
85	1399	351	157	89	58	41	31	24
90	1637	411	184	104	67	47	35	28
95	2024	508	227	128	83	58	43	34
α _{0.10}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	562	142	64	36	24	17	13	10
65	643	162	73	42	27	19	15	10
		-	10	42	21	15	15	12
70	734	184	83	42	31	22	16	12
70 75	734 838							
		184	83	47	31	22	16	13
75	838	184 211	83 94	47 54	31 35	22 25	16 19	13 15
75 80	838 964	184 211 242	83 94 108	47 54 62	31 35 40	22 25 28	16 19 21	13 15 17

Table A1.11. Streams: power analysis of sample size required at time1 and

time₂ to detect a change in nitrate concentrations in streams Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Countryside Survey 2007 Stratification – None Design – Independent

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	41980	10497	4666	2626	1681	1168	859	658
65	47136	11786	5239	2948	1887	1311	964	738
70	52892	13225	5879	3308	2118	1471	1081	828
75	59476	14871	6610	3719	2381	1654	1216	931
80	67262	16817	7475	4206	2692	1870	1375	1053
85	76941	19237	8551	4811	3080	2139	1572	1204
90	90044	22513	10007	5630	3604	2503	1840	1409
95	111359	27841	12375	6962	4456	3095	2275	1742
α _{0.10}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	30862	7716	3430	1930	1236	859	631	484
65	35310	8829	3925	2208	1414	982	722	553
70	40319	10081	4481	2521	1614	1121	824	631
75	46095	11525	5123	2882	1845	1282	942	722
80	50000	10040	5888	3313	2121	1473	1083	829
	52980	13246	5000	3313	2121	1470	1005	023
85	61608	13246	6847	3852	2466	1713	1259	964
85 90								

Table A1.12. Streams: power analysis of sample size required at time1 and time₂ to detect a change in nitrate concentrations in streams

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Results from Countryside Survey 2007

Stratification – None

Design – Matched pairs

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	10497	2626	1168	658	422	294	216	166
65	11786	2948	1311	738	473	329	242	186
70	13225	3308	1471	828	531	369	272	209
75	14871	3719	1654	931	597	415	305	234
80	16817	4206	1870	1053	675	469	345	265
85	19237	4811	2139	1204	771	536	395	303
90	22513	5630	2503	1409	902	627	461	354
95	27841	6962	3095	1742	1116	775	570	437
α _{0.10}			% ch	ange				
α _{0.10} Power	10	20	% ch 30	ange 40	50	60	70	80
	10 7716	20 1930			50 310	60 216	70 159	80 122
Power			30	40				
Power 60	7716	1930	30 859	40 484	310	216	159	122
Power 60 65	7716 8829	1930 2208	30 859 982	40 484 553	310 355	216 247	159 182	122 139
Power 60 65 70	7716 8829 10081	1930 2208 2521	30 859 982 1121	40 484 553 631	310 355 405	216 247 281	159 182 207	122 139 159
Power 60 65 70 75	7716 8829 10081 11525	1930 2208 2521 2882	30 859 982 1121 1282	40 484 553 631 722	310 355 405 462	216 247 281 322	159 182 207 237	122 139 159 181
Power 60 65 70 75 80	7716 8829 10081 11525 13246	1930 2208 2521 2882 3313	30 859 982 1121 1282 1473	40 484 553 631 722 829	310 355 405 462 531	216 247 281 322 369	159 182 207 237 272	122 139 159 181 208

Table A1.13. Streams: power analysis of sample size required at time1 and time₂ to detect a change in phosphate concentrations in streams Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Independent

α _{0.05}	%	6 change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	46665	11668	5187	2918	1869	1298	954	731
65	52396	13101	5824	3277	2098	1457	1071	821
70	58795	14700	6535	3677	2354	1635	1202	921
75	66114	16530	7348	4134	2646	1838	1351	1035
80	74768	18694	8309	4675	2993	2079	1528	1170
85	85528	21384	9505	5347	3423	2378	1747	1338
90	100093	25025	11123	6258	4006	2782	2045	1566
95	123787	30948	13756	7739	4953	3440	2528	1936
α _{0.10}	9	6 change	in phosp	hate con	centratio	n		
α _{0.10} Power	° 10	6 change 20	in phosp 30	hate con 40	centratio 50	n 60	70	80
							70 702	80 537
Power	10	20	30	40	50	60		
Power 60	10 34306	20 8578	30 3813	40 2145	50 1374	60 954	702	537
Power 60 65	10 34306 39251	20 8578 9814	30 3813 4362	40 2145 2454	50 1374 1571	60 954 1092	702 802	537 615
Power 60 65 70	10 34306 39251 44818	20 8578 9814 11206	30 3813 4362 4981	40 2145 2454 2802	50 1374 1571 1794	60 954 1092 1246	702 802 916	537 615 702
Power 60 65 70 75	10 34306 39251 44818 51239	20 8578 9814 11206 12811	30 3813 4362 4981 5694	40 2145 2454 2802 3204	50 1374 1571 1794 2051	60 954 1092 1246 1425	702 802 916 1047	537 615 702 802
Power 60 65 70 75 80	10 34306 39251 44818 51239 58892	20 8578 9814 11206 12811 14724	30 3813 4362 4981 5694 6545	40 2145 2454 2802 3204 3682	50 1374 1571 1794 2051 2357	60 954 1092 1246 1425 1637	702 802 916 1047 1203	537 615 702 802 922

Table A1.14. Streams: power analysis of sample size required at time1 and time₂ to detect a change in phosphate concentrations in streams

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Clean Water for Wildlife Survey 2016

Stratification – None

Design – Matched pairs

α _{0.05}	%	6 change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	2877	721	321	182	117	82	61	47
65	3230	809	361	204	131	92	68	52
70	3625	908	405	228	147	103	76	59
75	4076	1020	455	257	165	115	85	66
80	4609	1154	514	290	186	130	96	74
85	5272	1319	588	331	213	148	110	84
90	6169	1544	687	387	249	173	128	98
95	7629	1909	849	479	307	214	158	121
α _{0.10}	9	6 change	in phosp	hate con	centratio	n		
α _{0.10} Power	% 10	6 change 20	in phosp 30	hate con 40	centratio 50	n 60	70	80
							70 45	80 34
Power	10	20	30	40	50	60		
Power 60	10 2115	20 530	30 236	40 134	50 86	60 60	45	34
Power 60 65	10 2115 2420	20 530 606	30 236 270	40 134 153	50 86 98	60 60 69	45 51	34 39
Power 60 65 70	10 2115 2420 2763	20 530 606 692	30 236 270 308	40 134 153 174	50 86 98 112	60 60 69 78	45 51 58	34 39 45
Power 60 65 70 75	10 2115 2420 2763 3158	20 530 606 692 791	30 236 270 308 352	40 134 153 174 199	50 86 98 112 128	60 60 69 78 89	45 51 58 66	34 39 45 51
Power 60 65 70 75 80	10 2115 2420 2763 3158 3630	20 530 606 692 791 909	30 236 270 308 352 405	40 134 153 174 199 228	50 86 98 112 128 147	60 60 69 78 89 102	45 51 58 66 75	34 39 45 51 58

Table A1.15. Streams: power analysis of sample size required at time1 and

time₂ to detect a change in phosphate concentrations in streams Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Countryside Survey 2007 Stratification – None Design – Independent

α _{0.05}	%	6 change	in phosp	hate con	centratio	n		
Power	10	20	30	40	50	60	70	80
60	46665	11668	5187	2918	1869	1298	954	731
65	52396	13101	5824	3277	2098	1457	1071	821
70	58795	14700	6535	3677	2354	1635	1202	921
75	66114	16530	7348	4134	2646	1838	1351	1035
80	74768	18694	8309	4675	2993	2079	1528	1170
85	85528	21384	9505	5347	3423	2378	1747	1338
90	100093	25025	11123	6258	4006	2782	2045	1566
95	123787	30948	13756	7739	4953	3440	2528	1936
α _{0.10}	%	6 change	in phosp	hate con	centratio	n		
	% 10	6 change 20	in phosp 30	hate con 40	centratio 50	n 60	70	80
α _{0.10}							70 702	80 537
α _{0.10} Power	10	20	30	40	50	60		
α _{0.10} Power 60	10 34306	20 8578	30 3813	40 2145	50 1374	60 954	702	537
α _{0.10} Power 60 65	10 34306 39251	20 8578 9814	30 3813 4362	40 2145 2454	50 1374 1571	60 954 1092	702 802	537 615
α _{0.10} Power 60 65 70	10 34306 39251 44818	20 8578 9814 11206	30 3813 4362 4981	40 2145 2454 2802	50 1374 1571 1794	60 954 1092 1246	702 802 916	537 615 702
α _{0.10} Power 60 65 70 75	10 34306 39251 44818 51239	20 8578 9814 11206 12811	30 3813 4362 4981 5694	40 2145 2454 2802 3204	50 1374 1571 1794 2051	60 954 1092 1246 1425	702 802 916 1047	537 615 702 802
α _{0.10} Power 60 65 70 75 80	10 34306 39251 44818 51239 58892	20 8578 9814 11206 12811 14724	30 3813 4362 4981 5694 6545	40 2145 2454 2802 3204 3682	50 1374 1571 1794 2051 2357	60 954 1092 1246 1425 1637	702 802 916 1047 1203	537 615 702 802 922

Table A1.16. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in phosphate concentrations in streams

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Countryside Survey 2007 Stratification – None Design – Matched pairs

α _{0.05}	%	change	in phosp	hate con	centration	า		
Power	10	20	30	40	50	60	70	80
60	11668	2918	1298	731	469	326	240	184
65	13101	3277	1457	821	526	366	269	207
70	14700	3677	1635	921	590	410	302	232
75	16530	4134	1838	1035	663	461	339	260
80	18694	4675	2079	1170	750	521	383	294
85	21384	5347	2378	1338	857	596	438	336
90	25025	6258	2782	1566	1003	697	513	393
95	30948	7739	3440	1936	1240	862	634	486
α _{0.10}					centratio	ı		
						n 60	70	80
α _{0.10}	%	change	in phosp	hate con	centratio		70 176	80 135
α _{0.10} Power	% 10	change 20	in phosp 30	hate con 40	centration 50	60		
α _{0.10} Power 60	% 10 8578	change 20 2145	in phosp 30 954	hate con 40 537	centration 50 344	60 240	176	135
α _{0.10} Power 60 65	% 10 8578 9814	change 20 2145 2454	in phosp 30 954 1092	hate con 40 537 615	centration 50 344 394	60 240 274	176 202	135 155
α _{0.10} Power 60 65 70	% 10 8578 9814 11206	change 20 2145 2454 2802	in phosp 30 954 1092 1246	hate con 40 537 615 702	centration 50 344 394 450	60 240 274 313	176 202 230	135 155 176
α _{0.10} Power 60 65 70 75	% 10 8578 9814 11206 12811	change 20 2145 2454 2802 3204	in phosp 30 954 1092 1246 1425	hate con 40 537 615 702 802	centration 50 344 394 450 514	60 240 274 313 357	176 202 230 263	135 155 176 202
α _{0.10} Power 60 65 70 75 80	% 10 8578 9814 11206 12811 14724	change 20 2145 2454 2802 3204 3682	in phosp 30 954 1092 1246 1425 1637	hate con 40 537 615 702 802 922	centration 50 344 394 450 514 590	60 240 274 313 357 410	176 202 230 263 302	135 155 176 202 231

Table A2. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in wetland plant species richness

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Countryside Survey 2007 Stratification – none

Design – Matched pairs

α _{0.05}	%	change	pond pla	nt specie	s richnes	s		
Power	10	20	30	40	50	60	70	80
60	515	130	59	34	23	16	13	10
65	578	146	66	38	25	18	14	11
70	648	164	74	42	28	20	15	12
75	729	184	83	47	31	22	17	13
80	824	208	93	53	35	25	19	15
85	942	237	106	61	40	28	21	17
90	1102	277	124	71	46	33	25	19
95	1363	342	153	87	56	40	30	23
α _{0.10}	%	change	pond pla	nt specie	s richnes	s		
α _{0.10} Power	% 10	change 20	pond pla 30	nt specie 40	s richnes 50	s 60	70	80
			<u> </u>				70 9	80 7
Power	10	20	30	40	50	60		
Power 60	10 379	20 96	30 43	40 25	50 17	60 12	9	7
Power 60 65	10 379 433	20 96 109	30 43 49	40 25 28	50 17 19	60 12 14	9 10	7 8
Power 60 65 70	10 379 433 494	20 96 109 125	30 43 49 56	40 25 28 32	50 17 19 21	60 12 14 15	9 10 12	7 8 9
Power 60 65 70 75	10 379 433 494 565	20 96 109 125 142	30 43 49 56 64	40 25 28 32 37	50 17 19 21 24	60 12 14 15 17	9 10 12 13	7 8 9 10
Power 60 65 70 75 80	10 379 433 494 565 649	20 96 109 125 142 163	30 43 49 56 64 73	40 25 28 32 37 42	50 17 19 21 24 27	60 12 14 15 17 19	9 10 12 13 15	7 8 9 10 12

Table A3. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in wetland plant species richness

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Countryside Survey 2007 Stratification – none Design – Matched pairs

Q 0.05	%	change s	stream pla	ant speci	es richne	SS		
Power	10	20	30	40	50	60	70	80
60	379	96	43	25	17	12	9	7
65	433	109	49	28	19	14	10	8
70	494	125	56	32	21	15	12	9
75	565	142	64	37	24	17	13	10
80	649	163	73	42	27	19	15	12
85	754	190	85	49	32	22	17	13
90	898	226	101	57	37	26	20	16
95	1135	285	127	72	47	33	25	19
α _{0.10}	%	change s	stream pla	ant speci	es richne	SS		
α _{0.10} Power	% 10	change s 20	stream pla 30	ant speci 40	es richne 50	ss 60	70	80
							70 6	80 5
Power	10	20	30	40	50	60		
Power 60	10 248	20 63	30 28	40 16	50 11	60 8	6	5
Power 60 65	10 248 292	20 63 74	30 28 33	40 16 19	50 11 13	60 8 9	6 7	5 6
Power 60 65 70	10 248 292 342	20 63 74 86	30 28 33 39	40 16 19 22	50 11 13 15	60 8 9 10	6 7 8	5 6 6
Power 60 65 70 75	10 248 292 342 402	20 63 74 86 101	30 28 33 39 45	40 16 19 22 26	50 11 13 15 17	60 8 9 10 12	6 7 8 9	5 6 6 7
Power 60 65 70 75 80	10 248 292 342 402 473	20 63 74 86 101 119	30 28 33 39 45 53	40 16 19 22 26 30	50 11 13 15 17 20	60 8 9 10 12 14	6 7 8 9 11	5 6 6 7 8

Table A4. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in wetland plant species richness

detect a change in wetland plant species richness Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Countryside Survey 2007 Stratification – none Design – Independent

α _{0.05}	c	% change	pond pla	ant specie	es richne	SS		
Power	10	20	30	40	50	60	70	80
60	1511	379	169	96	62	43	32	25
65	1728	433	193	109	71	49	37	28
70	1973	494	220	125	80	56	42	32
75	2255	565	252	142	92	64	47	37
80	2591	649	289	163	105	73	54	42
85	3013	754	336	190	122	85	63	49
90	3589	898	400	226	145	101	75	58
95	4535	1135	505	285	183	127	94	72
α _{0.10}	c	% change	pond pla	ant specie	es richne	ss		
Power	10	20	30	40	50	60	70	80
60	988	248	111	63	40	28	21	16
65	1165	292	130	74	47	33	25	19
70								
	1367	342	153	86	56	39	29	22
75	1367 1604	342 402	153 179	86 101	56 65	39 45	29 34	22 26
75	1604	402	179	101	65	45	34	26
75 80	1604 1889	402 473	179 211	101 119	65 76	45 53	34 39	26 30

Table A5. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in wetland plant species richness

to detect a change in wetland plant species richness Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Countryside Survey 2007 Stratification – none Design – Independent

α _{0.05}	%	change s	tream pla	ant speci	es richne	SS		
Power	10	20	30	40	50	60	70	80
60	1511	379	169	96	62	43	32	25
65	1728	433	193	109	71	49	37	28
70	1973	494	220	125	80	56	42	32
75	2255	565	252	142	92	64	47	37
80	2591	649	289	163	105	73	54	42
85	3013	754	336	190	122	85	63	49
90	3589	898	400	226	145	101	75	58
95	4535	1135	505	285	183	127	94	72
α _{0.10}	%	change s	tream nl	ant enoci	es richne	ee		
	<i>,</i> 0	change 3		ant speci	es nenne	33		
Power	10	20	30	40	50 50	60	70	80
							70 21	80 16
Power	10	20	30	40	50	60		
Power 60	10 988	20 248	30 111	40 63	50 40	60 28	21	16
Power 60 65	10 988 1165	20 248 292	30 111 130	40 63 74	50 40 47	60 28 33	21 25	16 19
Power 60 65 70	10 988 1165 1367	20 248 292 342	30 111 130 153	40 63 74 86	50 40 47 56	60 28 33 39	21 25 29	16 19 22
Power 60 65 70 75	10 988 1165 1367 1604	20 248 292 342 402	30 111 130 153 179	40 63 74 86 101	50 40 47 56 65	60 28 33 39 45	21 25 29 34	16 19 22 26
Power 60 65 70 75 80	10 988 1165 1367 1604 1889	20 248 292 342 402 473	30 111 130 153 179 211	40 63 74 86 101 119	50 40 47 56 65 76	60 28 33 39 45 53	21 25 29 34 39	16 19 22 26 30

Table A6. Streams: Power analysis of sample size required at time₁ and time₂ to detect a change in Trophic Diatom Index 3

Analysis – Wilcoxon-Mann-Whitney test (two groups) Environment Agency national monitoring programme 2016 data

Data used – Environment Agency national monitoring programme 2016 data Stratification – none

Design – Independent

α _{0.05}	%	6 change	pond pla	nt specie	s richnes	s		
Power	10	20	30	40	50	60	70	80
60	290	74	34	20	14	10	8	7
65	326	83	38	22	15	11	9	8
70	365	93	42	25	17	12	10	8
75	410	104	47	28	19	14	11	9
80	464	117	53	31	21	15	12	10
85	530	134	61	35	23	17	13	11
90	620	157	71	41	27	19	15	12
95	766	193	87	50	33	23	18	14
α _{0.10}	%	6 change	pond pla	nt specie	s richnes	s		
α _{0.10} Power	% 10	6 change 20	pond pla 30	nt specie 40	es richnes 50	es 60	70	80
			· ·				70 6	<mark>80</mark> 5
Power	10	20	30	40	50	60		
Power 60	10 213	20 54	30 25	40 15	50 10	60 8	6	5
Power 60 65	10 213 244	20 54 62	30 25 28	40 15 17	50 10 11	60 8 9	6 7	5 6
Power 60 65 70	10 213 244 278	20 54 62 71	30 25 28 32	40 15 17 19	50 10 11 13	60 8 9 9	6 7 8	5 6 6
Power 60 65 70 75	10 213 244 278 318	20 54 62 71 81	30 25 28 32 37	40 15 17 19 21	50 10 11 13 14	60 8 9 9 11	6 7 8 8	5 6 6 7
Power 60 65 70 75 80	10 213 244 278 318 365	20 54 62 71 81 92	30 25 28 32 37 42	40 15 17 19 21 24	50 10 11 13 14 16	60 8 9 9 11 12	6 7 8 8 9	5 6 7 8

Table A7. Streams: Power analysis of sample size required at time1 and time2 to detect a change in Environment Trophic Diatom Index 3

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Environment Agency national monitoring programme 2016 data

Stratification – None

Design – Matched pairs

α _{0.05}	% change pond plant species richness									
Power	10	20	30	40	50	60	70	80		
60	54	15	7	5	4	3	3	3		
65	62	17	8	5	4	3	3	3		
70	71	19	9	6	5	4	3	3		
75	81	21	10	7	5	4	3	3		
80	92	24	12	7	5	4	4	3		
85	107	28	13	8	6	5	4	4		
90	127	33	16	9	7	5	4	4		
95	161	41	19	12	8	6	5	4		
α _{0.10}	9	6 change	pond pla	nt specie	s richnes	s				
Power	10	20	30	40	50	60	70	80		
60	36	10	5	3	3	2	2	2		
65	42	11	6	4	3	2	2	2		
70	49	13	6	4	3	3	2	2		
75	57	15	7	5	3	3	3	2		
80	67	17	8	5	4	3	3	2		
85	80	21	10	6	4	3	3	3		
90	97	25	12	7	5	4	3	3		

Table A8. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in Riverfly ARMI monitoring score

to detect a change in Riverfly ARMI monitoring score Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Riverfly survey 2016 Stratification – none Design – Matched pairs

α _{0.05}		% chang	je strean	n macroin	vertebra	te taxon i	ichness		
Power	5	10	20	30	40	50	60	70	80
60	319	81	22	11	7	5	4	4	4
65	358	91	24	12	8	6	5	4	4
70	401	102	27	13	8	6	5	4	4
75	451	114	30	15	9	7	5	5	4
80	510	129	34	16	10	7	6	5	4
85	583	147	38	18	11	8	6	5	5
90	682	172	45	21	13	9	7	6	5
95	843	212	55	25	15	11	8	7	6
G									
α _{0.10}		% chang	je stream	n macroin	vertebra	te taxon i	ichness		
Power	5	% chang 10	je stream 20	n macroin 30	vertebra	te taxon i 50	ichness 60	70	80
	5 234							70 3	80 3
Power		10	20	30	40	50	60		
Power 60	234	10 60	20 16	30 8	40 5	50 4	60 3	3	3
Power 60 65	234 268	10 60 68	20 16 18	30 8 9	40 5 6	50 4 4	60 3 4	3 3	3 3
Power 60 65 70	234 268 306	10 60 68 78	20 16 18 21	30 8 9 10	40 5 6 6	50 4 4 5	60 3 4 4	3 3 3	3 3 3
Power 60 65 70 75	234 268 306 349	10 60 68 78 88	20 16 18 21 23	30 8 9 10 11	40 5 6 6 7	50 4 4 5 5	60 3 4 4 4	3 3 3 4	3 3 3 3
Power 60 65 70 75 80	234 268 306 349 401	10 60 68 78 88 101	20 16 18 21 23 26	30 8 9 10 11 13	40 5 6 6 7 8	50 4 4 5 5 6	60 3 4 4 4 5	3 3 3 4 4	3 3 3 3 3

Table A9. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in Riverfly ARMI monitoring score

to detect a change in Riverfly ARMI monitoring score Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Riverfly data 2016 Stratification – none Design – Independent

α _{0.05}		% chang	ge stream	macroir	vertebrat	e taxon r	ichness		
Power	5	10	20	30	40	50	60	70	80
60	1270	319	81	37	22	15	11	9	8
65	1425	358	91	42	24	16	12	10	8
70	1599	401	102	46	27	18	13	11	9
75	1798	451	114	52	30	20	15	12	9
80	2033	510	129	58	34	23	16	13	10
85	2325	583	147	67	38	25	18	14	11
90	2721	682	172	78	45	29	21	16	13
95	3365	843	212	95	55	36	26	19	15
α _{0.10}		% chang	ge stream	macroir	vertebrat	te taxon r	ichness		
Power	5	10	20	30	40	50	60	70	80
60	933	234	60	27	16	11	8	7	6
65	1068	268	68	31	18	12	9	7	6
70	1219	306	78	35	21	14	10	8	7
75	1000	040	00	40	23	16	11	9	7
	1393	349	88	40	23	10		<u> </u>	-
80	1601	401	101	40	23	18	13	10	8
80 85									8
	1601	401	101	46	27	18	13	10	

Table A10. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in stream macroinvertebrate taxon richness

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Countryside Survey 2007 Stratification – none Design – Matched pairs

α _{0.05}		% chang	je stream	n macroin	vertebrat	te taxon r	ichness		
Power	5	10	20	30	40	50	60	70	80
60	319	81	22	11	7	5	4	4	4
65	358	91	24	12	8	6	5	4	4
70	401	102	27	13	8	6	5	4	4
75	451	114	30	15	9	7	5	5	4
80	510	129	34	16	10	7	6	5	4
85	583	147	38	18	11	8	6	5	5
90	682	172	45	21	13	9	7	6	5
95	843	212	55	25	15	11	8	7	6
α _{0.10}		% chang	je stream	n macroin	vertebra	te taxon r	ichness		
α _{0.10} Power	5	% chang 10	je stream 20	n macroin 30	vertebrat 40	te taxon r 50	ichness 60	70	80
	5 319							70 3	80 3
Power		10	20	30	40	50	60		
Power 60	319	10 60	20 16	30 8	40 5	50 4	60 3	3	3
Power 60 65	319 365	10 60 68	20 16 18	30 8 9	40 5 6	50 4 4	60 3 4	3 3	3 3
Power 60 65 70	319 365 416	10 60 68 78	20 16 18 21	30 8 9 10	40 5 6 6	50 4 4 5	60 3 4 4	3 3 3	3 3 3
Power 60 65 70 75	319 365 416 476	10 60 68 78 88	20 16 18 21 23	30 8 9 10 11	40 5 6 6 7	50 4 4 5 5	60 3 4 4 4	3 3 3 4	3 3 3 3
Power 60 65 70 75 80	319 365 416 476 547	10 60 68 78 88 101	20 16 18 21 23 26	30 8 9 10 11 13	40 5 6 6 7 8	50 4 4 5 5 6	60 3 4 4 4 5	3 3 3 4 4	3 3 3 3 3

Table A11. Streams: power analysis of sample size required at time₁ and time₂ to detect a change in stream macroinvertebrate taxon richness

Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Countryside Survey 2007 Stratification – none Design – Independent

α _{0.05}	% chan	ige strear	n macroi	nvertebra	ite taxon	richness		
Power	10	20	30	40	50	60	70	80
60	319	81	37	21	14	11	8	7
65	365	92	42	24	16	12	9	8
70	416	105	48	27	18	13	10	8
75	476	120	54	31	21	15	11	9
80	547	138	62	36	23	17	13	10
85	635	160	72	41	27	19	15	12
90	757	190	85	49	32	23	17	13
95	956	240	107	61	40	28	21	17
α _{0.10}	% chan	ige strear	n macroi	nvertebra	ite taxon	richness		
Power	10	20	30	40	50	60	70	80
60	209	53	24	14	9	7	6	5
65	246	62	28	16	11	8	6	5
70	288	73	33	19	13	9	7	6
75	338	85	38	22	15	10	8	7
80	398	100	45	26	17	12	9	7
80 85	398 475	100 119	45 54	26 31	17 20	12 14	9 11	7 9

Table A12. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in pond macroinvertebrate species richness

Analysis – Wilcoxon signed-rank test (matched pairs) Data used – Results from Countryside Survey 2007 Stratification – none Design – Matched pairs

α _{0.05}		% chang	je stream	n macroin	vertebrat	te taxon r	ichness		
Power	5	10	20	30	40	50	60	70	80
60		96	25	13	8	6	5	4	4
65		107	28	14	9	6	5	4	4
70		120	32	15	10	7	6	5	4
75		135	35	17	10	8	6	5	4
80		152	40	19	12	8	6	5	5
85		174	45	21	13	9	7	6	5
90		203	52	24	15	10	8	6	6
95		250	64	30	18	12	9	7	6
α _{0.10}		% chang	je stream	n macroin	vertebrat	te taxon r	ichness		
	5	% chang 10	je stream 20	n macroin 30	vertebrat 40	te taxon r 50	ichness 60	70	80
α _{0.10}	5	<u>_</u>						70 3	80 3
α _{0.10} Power	5	10	20	30	40	50	60		
α _{0.10} Power 60	5	10 70	20 19	30 9	40 6	50 4	60 4	3	3
α _{0.10} Power 60 65	5	10 70 80	20 19 21	30 9 10	40 6 7	50 4 5	60 4 4	3 3	3 3
α _{0.10} Power 60 65 70	5	10 70 80 91	20 19 21 24	30 9 10 12	40 6 7 7	50 4 5 5	60 4 4 4	3 3 4	3 3 3
α _{0.10} Power 60 65 70 75	5	10 70 80 91 104	20 19 21 24 27	30 9 10 12 13	40 6 7 7 8	50 4 5 5 6	60 4 4 4 5	3 3 4 4	3 3 3 3
α _{0.10} Power 60 65 70 75 80	5	10 70 80 91 104 120	20 19 21 24 27 31	30 9 10 12 13 15	40 6 7 7 8 9	50 4 5 5 6 6	60 4 4 4 5 5	3 3 4 4 4	3 3 3 3 4

Table A13. Ponds: power analysis of sample size required at time₁ and time₂ to detect a change in pond macroinvertebrate species richness

detect a change in pond macroinvertebrate species richness Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Countryside Survey 2007 Stratification – none Design – Independent

α _{0.05}	% chang	ge stream	n macroin	vertebra	te taxon r	ichness		
Power	10	20	30	40	50	60	70	80
60	376	96	44	26	17	13	10	8
65	422	107	49	28	19	14	11	9
70	474	120	55	32	21	15	12	10
75	533	135	61	35	23	17	13	11
80	602	152	69	40	26	19	15	12
85	688	174	78	45	30	21	16	13
90	805	203	91	52	34	25	19	15
95	995	250	112	64	42	30	23	18
α _{0.10}	% chang	ge stream	n macroin	vertebra	te taxon r	ichness		
α _{0.10} Power	% chang 10	ge stream 20	n macroin 30	vertebra 40	te taxon r 50	ichness 60	70	80
		-					70 8	80 6
Power	10	20	30	40	50	60		
Power 60	10 277	20 70	30 32	40 19	50 13	60 9	8	6
Power 60 65	10 277 316	20 70 80	30 32 36	40 19 21	50 13 14	60 9 10	8 8	6 7
Power 60 65 70	10 277 316 361	20 70 80 91	30 32 36 41	40 19 21 24	50 13 14 16	60 9 10 12	8 8 9	6 7 8
Power 60 65 70 75	10 277 316 361 413	20 70 80 91 104	30 32 36 41 47	40 19 21 24 27	50 13 14 16 18	60 9 10 12 13	8 8 9 10	6 7 8 8
Power 60 65 70 75 80	10 277 316 361 413 474	20 70 80 91 104 120	30 32 36 41 47 54	40 19 21 24 27 31	50 13 14 16 18 20	60 9 10 12 13 15	8 8 9 10 11	6 7 8 8 9

Table A14. Fish in streams: power analysis of sample size required at time1 and time₂ to detect a change in fish species richness in streams

Analysis – Wilcoxon-Mann-Whitney test (two groups) Data used – Results from Water Friendly Farming project 2012 and 2013 Stratification – None Design – Independent

α _{0.05}			% ch	ange				
Power	10	20	30	40	50	60	70	80
60	1617	406	182	103	67	47	35	27
65	1816	455	204	115	75	52	39	30
70	2037	511	228	129	83	59	44	34
75	2291	574	256	145	94	66	49	38
80	2590	649	290	164	106	74	55	43
85	2963	742	331	187	120	84	63	48
90	3467	868	387	219	141	98	73	56
95	4287	1073	478	270	173	121	90	69
α _{0.10}			% ch	ange				
Power	10	20						
		20	30	40	50	60	70	80
60	1189	298	30 133	40 76	50 49	60 34	70 26	80 20
60 65								
	1189	298	133	76	49	34	26	20
65	1189 1360	298 341	133 152	76 86	49 56	34 39	26 29	20 23
65 70	1189 1360 1553	298 341 389	133 152 174	76 86 98	49 56 64	34 39 45	26 29 33	20 23 26
65 70 75	1189 1360 1553 1775	298 341 389 445	133 152 174 199	76 86 98 112	49 56 64 72	34 39 45 51	26 29 33 38	20 23 26 29
65 70 75 80	1189 1360 1553 1775 2040	298 341 389 445 511	133 152 174 199 228	76 86 98 112 129	49 56 64 72 83	34 39 45 51 58	26 29 33 38 43	20 23 26 29 33

Table A15. Fish in streams: power analysis of sample size required at time1 and time2 to detect a change in fish species richness in streams

Analysis – Wilcoxon signed-rank test (matched pairs)

Data used – Results from Water Friendly Farming project 2012 and 2013 Stratification – None Design – Matched pairs

% change α_{0.05} Power % change **α**_{0.10} Power

Appendix 2. National Trust Land Condition Assessment Guidance

	LCA score 1	LCA score 2	LCA score 3	LCA score 4	LCA score 5
	Very good	Good	Moderate	Poor	Worst
		vater indicators ut the year	Generally acceptable	Significant scope for improvement	Fails Minimum Standard
Healthy: Water	Very high quality indicators evident and abundant throughout year and no evidence of adverse impacts Confirmed by examination of water samples	High quality indicators evident throughout year, limited or no evidence of adverse impacts Confirmed by observations	Limited evidence of high quality indicators. Any adverse impacts are very localised and temporary Confirmed by observations	Evidence of significant/ severe pollution and water quality issues. No high quality indicators present Confirmed by observations	Evidence of issues or practices that could represent a breach of legal compliance and/or would result in serious reputational damage for the Trust. (Presumption that as a minimum all NT land must comply with legal and statutory cross compliance obligations, and
					any further unacceptable situations shown below)
Characteristic	detail	detail	detail	detail	detail

Guidance: Scores judged on visual assessment of watercourses and knowledge of seasonal impacts across range of streams, ditches and ponds.

Point source pollution e.g. slurry; farm yard manure; dirty water; silage liquor; parlour washings; food processing waste. chemical and fuel pollutants, agricultural / industrial waste, domestic sewerage	No evident point source pollution.	No evident point source pollution.	Minor/short-lived point source pollution	Significant point source pollution entering watercourses and /or soakaways.	Severe/ persistent point source pollution entering watercourses and /or soakaways. Signs include: foul smell, surface films, discolouration, sewage fungus etc.
Farm Infrastructure Pollution Risk Assessment The risk posed by the condition of farm infrastructure combined with location and drainage that could allow the escape of hazardous material to enter drains or groundwater or a water body. (See FIPRA score on MI dashboard).	Negligible risk (FIPRA SCORE 20-30) or no associated farm infrastructure present . such as: silage clamps, slurry / FYM stores, dirty water stores, dipping facilities, agricultural fuel tanks, fertiliser and chemical stores.	Minor risk (FIPRA score 30-40)	Moderate risk (FIPRA score 40-60)	High risk (FIPRA score 60-70)	Very high risk (FIPRA score >70)

Note: 1) If FIPRA score >60 (High Risk), review FIPRA assessment by site visit and plan action to resolve issue, e.g. upgrade or decommission high risk infrastructure 2) If date of FIPRA assessment is >5 years old, plan to undertake reassessment of site.

Siltation and turbidity	High water clarity and clean gravels (where appropriate). No sign of soil erosion issues.	Turbidity issues limited to periods when very high rainfall coincides with limited ground cover (bare fields). No signs of silt accumulating in watercourses and no signs of erosion.	Turbidity issues limited to periods when very high rainfall coincides with limited ground cover (bare fields). In channel silt found in very slow water areas and dispersed during high flows.	Year round turbidity and/or high levels of fine silt smothering gravels. Obvious soil erosion issues which are impacting water courses.	Consistent with/attributable to severe pollution issues.
Healthy:					
Water (cont.)	LCA score 1	LCA score 2	LCA score 3	LCA score 4	LCA score 5
Characteristic	detail	detail	detail	detail	detail
Biological indicators: Invertebrates Note: some naturally low pH (acidic) waters will not support diverse aquatic invertebrates	Abundant invertebrates across sensitive taxa (stoneflies, mayflies).	Abundant invertebrates but some highly sensitive taxa may be missing.	Moderate invertebrate diversity and abundance.	Limited (e.g. pollution tolerant), or absent aquatic invertebrate biodiversity.	Consistent with/attributable to severe pollution issues.
Biological indicators: Plants and algae	Diverse aquatic plant community (including mosses, liverworts and algae). In particular diverse range of submerged plants including sensitive species such as stoneworts.	Good range of aquatic plants present with different growth forms (submerged, emergent and floating).	Limited plant diversity and mainly emergent species present. Occasional algal problems e.g. late summer blooms.	Aquatic plants very limited (only one or two species present), or non-existent. Regular algal problems (filamentous or planktonic) e.g. green coloured water or dense floating mats of algae throughout the summer.	Consistent with/attributable to severe pollution issues.

Appendix 3. Examples of species of conservation concern for which survey methods have been developed as part of PondNet.

Links are provided to the species' recording forms on the Freshwater Habitats Trust website for selected species of conservation concern covered by the PondNet project.

- Adder's-tongue Spearwort: <u>https://freshwaterhabitats.org.uk/wp-</u> content/uploads/2015/03/4-ADDERS-TONGUE-SPEARWORT-RARE-SPECIES-<u>RECORDING-SHEET-FINAL.pdf</u>
- Brown Galingale: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/6-BROWN-GALINGALE-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Coral Necklace: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/7-CORAL-NECKLACE-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Greater Water-parsnip: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/12-</u> <u>GREATER-WATER-PARSNIP-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Pillwort: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/21-PILLWORT-</u> <u>RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Starfruit: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/25-STARFRUIT-RARE-SPECIES-RECORDING-SHEET-FINAL1.pdf</u>
- Three-lobed Water-crowfoot: <u>https://freshwaterhabitats.org.uk/wp-</u> content/uploads/2015/03/29-THREE-LOBED-WATER_CROWFOOT-RARE-SPECIES-<u>RECORDING-SHEET-FINAL.pdf</u>
- Tubular Water-dropwort: <u>https://freshwaterhabitats.org.uk/wp-</u> <u>content/uploads/2015/03/30-TUBULAR-WATER-DROPWORT-RARE-SPECIES-</u> <u>RECORDING-SHEET-FINAL.pdf</u>
- Yellow Centaury: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/32-YELLOW-CENTAURY-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Medicinal Leech: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/17-</u> <u>MEDICINAL-LEECH-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Fairy Shrimp: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/9-FAIRY-SHRIMP-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf</u>
- Pond Mud Snail: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/22-</u> POND-MUD-SNAIL-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf
- Tadpole Shrimp: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/27-</u> TADPOLE-SHRIMP-RARE-SPECIES-RECORDING-SHEET-FINAL.pdf
- Common toad: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/2-</u> COMMON-TOAD-AND-COMMON-FROG-FINAL.pdf
- Great crested newt: <u>https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/3-eDNA-GREAT-CRESTED-NEWT-RECORDING-FORM-FINAL.pdf</u>

Appendix 4. PondNet pond habitat recording form

A link is given here to the to PondNet habitat recording form on the Freshwater Habitats Trust web site.

https://freshwaterhabitats.org.uk/wp-content/uploads/2015/03/1-POND-HABITAT-SURVEY-RECORDING-FORM-FINAL.pdf.